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A parameter estimation problem is considered for a diagonalizable stochastic evolution
equation using a finite number of the Fourier coefficients of the solution. The equation
is driven by additive noise that is white in space and fractional in time with the Hurst
parameter H ≥ 1/2. The objective is to study asymptotic properties of the maximum
likelihood estimator as the number of the Fourier coefficients increases. A necessary and
sufficient condition for consistency and asymptotic normality is presented in terms of
the eigenvalues of the operators in the equation.
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1. Introduction

In the classical statistical estimation problem, the starting point is a family Pθ of
probability measures depending on the parameter θ in some subset Θ of a finite-
dimensional Euclidean space. Each Pθ is the distribution of a random element. It
is assumed that a realization of one random element corresponding to one value
θ = θ0 of the parameter is observed, and the objective is to estimate the values of
this parameter from the observations.
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The intuition is to select the value θ corresponding to the random element that is
most likely to produce the observations. A rigorous mathematical implementation of
this idea leads to the notion of the regular statistical model [4]: the statistical model
(or estimation problem) Pθ, θ ∈ Θ, is called regular, if there exists a probability
measure Q such that all the measures Pθ are absolutely continuous with respect to
Q and the density dPθ/dQ, called the likelihood ratio, has a certain regularity.

In regular models, the estimator θ̂ of the unknown parameter is constructed
by maximizing the likelihood ratio and is called the maximum likelihood estimator
(MLE). Since, as a rule, θ̂ �= θ0, the consistency of the estimator is studied, that is,
the convergence of θ̂ to θ0 as more and more information becomes available. In all
known regular statistical problems, the amount of information can be increased in
one of two ways: (a) increasing the sample size, for example, the observation time
interval (large sample asymptotic); (b) reducing the amplitude of noise (small noise
asymptotic).

In finite-dimensional models, the only way to increase the sample size is to
increase the observation time. In infinite-dimensional models, in particular, those
provided by stochastic partial differential equations (SPDEs), another possibility
is to increase the dimension of the spatial projection of the observations. Thus,
a consistent estimator can be possible on a finite time interval with fixed noise
intensity. This possibility was first suggested by Huebner et al. [2] for parabolic
equations driven by additive spacetime white noise, and was further investigated
by Huebner and Rozovskii [3], where a necessary and sufficient condition for the
existence of a consistent estimator was stated in terms of the orders of the operators
in the equation.

The objective of this paper is to extend the model from [3] to parabolic equations
in which the time component of the noise is fractional with the Hurst parameter
H ≥ 1/2. More specifically, we consider an abstract evolution equation

u(t) +
∫ t

0

(A0 + θA1)u(s)ds = WH(t), (1.1)

where A0 and A1 are known linear operators and θ ∈ Θ ⊆ R is the unknown
parameter; the zero initial condition is taken to simplify the presentation. The
noise WH(t) is the cylindrical fractional Brownian motion on a Hilbert space H
and can be written as

WH(t) =
∞∑

j=1

wH
j (t)hj , (1.2)

where {wH
j , j ≥ 1} are independent fractional Brownian motions with the same

Hurst parameter H ≥ 1/2 and {hj, j ≥ 1} is an orthonormal basis in a
Hilbert space H; H = 1/2 corresponds to the cylindrical Brownian motion. It
can be shown (see Proposition 2.1 below) that (1.2) defines a continuous Gaus-
sian process with values in some larger Hilbert space X. Existence and unique-
ness of the solution under certain regularity conditions on A0 and A1 for such
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equations are well known for all H ∈ (0, 1); see, for example, Tindel et al.
[17, Theorem 1].

The main additional assumption about (1.1), both in [3] and in this paper, is
that the equation is diagonalizable: {hj , j ≥ 1} from (1.2) is a common system of
eigenfunction of the operators A0 and A1:

A0hj = ρjhj , A1hj = νjhj. (1.3)

Under certain conditions on the numbers ρj , νj , the solution of (1.1) is a conver-
gent Fourier series u(t) =

∑
j≥1 uj(t)hj , and each uj(t) is a fractional Ornstein–

Uhlenbeck (OU) process. An N -dimensional projection of the solution is then an N -
dimensional fractional OU process with independent components. A Girsanov-type
formula (for example, from Kleptsyna et al. [8, Theorem 3]) leads to a maximum
likelihood estimator θ̂N of θ based on the first N Fourier coefficients u1, . . . , uN of
the solution of (1.1). An explicit expression for this estimator exists but requires
a number of additional notations; see formula (3.8) below. A particular case of
Eq. (1.1) was studied by Prakasa Rao [14].

If the solution of (1.1) is completely observable at every t ∈ [0, T ], then each
Fourier coefficient uk, being a linear functional of the solution, can be computed.
For example, if u is regular enough so that u(t) ∈ L2(Ω; H) for every t, then
uk(t) = (u(t), hk)H .

The following is the main result of the paper.

Theorem 1.1. Define µj = θνj + ρj. Then the maximum likelihood estimator
θ̂N of θ is strongly consistent and asymptotically normal, as N → ∞, if and only
if the series

∑
j ν2

j µ−1
j diverges; the rate of convergence of the estimator is given

by the square root of the partial sums of this series: as N → ∞, the sequence(∑
j≤N ν2

j µ−1
j

)1/2
(θ̂N −θ) converges in distribution to a Gaussian random variable.

If the operators A0 and A1 are elliptic of orders m0 and m1 in L2(M), where
M is a d-dimensional manifold, and 2m = max(m0, m1), then the asymptotic of
the eigenvalues of elliptic operators implies that the divergence of

∑
j ν2

j µ−1
j is

equivalent to m1 ≥ m − (d/2); in the case H = 1/2 this condition on the orders
was derived in [3]. Thus, beside extending the results of [3] to fractional-in-time
noise, we also generalize the necessary and sufficient condition for consistency of
the estimator.

While parameter estimation for the finite-dimensional fractional OU and similar
processes has been recently investigated by Tudor and Viens [18] for all H ∈ (0, 1),
our analysis in infinite dimensions requires more delicate results: an explicit expres-
sion for the Laplace transform of a certain functional of the fractional OU process,
as obtained by Kleptsyna and Le Breton [7], and for now this expression exists only
for H ≥ 1/2.
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2. Stochastic Parabolic Equations with Additive FBM

In this section we introduce a diagonalizable stochastic parabolic equation driven
by a cylindrical fractional Brownian motion and study the main properties of the
solution.

Let (Ω,F , P) be a probability space and let H be a separable Hilbert space with
an orthonormal basis {hj, j ≥ 1}.
Definition 2.1. (a) A fractional Brownian motion with a Hurst parameter H ∈
(0, 1) is a Gaussian process wH with zero mean and covariance

EwH(t)wH(s) =
1
2
(t2H + s2H − |t − s|2H), t, s ≥ 0.

(b) The cylindrical fractional Brownian motion WH on a Hilbert space H is a
collection of zero-mean Gaussian processes WH

f = WH
f (t) indexed by the elements

f of the space H such that, for every f, g ∈ H and t, s ≥ 0,

E(WH
f (t)WH

g (s)) =
(f, g)H

2
(t2H + s2H − |t − s|2H). (2.1)

Proposition 2.1. Let H be a separable Hilbert space with an orthonormal basis
{hj, j ≥ 1}.
(a) If WH is a cylindrical Brownian motion on H, then {WH

hj
(t), j ≥ 1} is a col-

lection of independent fractional Brownian motions with the same Hurst param-
eter H.

(b) Let X is a Hilbert space such that H is a dense subset of X and the inclusion
operator j : H → X is Hilbert–Schmidt. If {wH

j (t), j ≥ 1} is a collection of
independent fractional Brownian motions with the same Hurst parameter H,

then the process WH(t) =
∑

j≥1 wH
j (t)hj is a continuous X-valued Gaussian

process and is a cylindrical fractional Brownian motion on H.

Proof. (a) This follows directly from (2.1).
(b) Since the inclusion j : H ↪→ X is Hilbert–Schmidt, we have∑

j≥1

‖hj‖2
X = Cj < ∞.

Therefore, since

EwH
j (t)wH

m(t) =

{
t2H , if k = m

0, if k �= m,

we find

E‖WH(t)‖2
X = t2HCj < ∞.

Similarly,

E‖WH(t) − WH(s)‖2
X = |t − s|2HCj,
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which, for H > 1/2, implies continuity by the Kolmogorov criterion. For H ≤ 1/2,
we consider E‖WH(t) − WH(s)‖2n

X for sufficiently large integer n. Next, setting

WH
f (t) =

∑
j≥1

(f, hj)2H,

we see that WH
f is a zero-mean Gaussian process and (2.1) holds.

Consider the following equation:

du(t) + (A0 + θA1)u(t)dt = dWH(t), 0 < t ≤ T, (2.2)

where A0, A1 are linear operators, θ is a scalar parameter belonging to an open set
Θ ⊂ R, and, for simplicity, u(0) = 0.

Definition 2.2. Equation (2.2) is called diagonalizable if the operators A0 and A1

have point spectrum and a common system of eigenfunctions {hj, j ≥ 1}.

Denote by ρj , νj , and µj(θ) the eigenvalues of the operators A0, A1, and A0 +θA1:

A0hj = ρjhj, A1hj = νjhj , µj(θ) = ρj + θνj , j ≥ 1. (2.3)

Definition 2.3. A diagonalizable equation (2.2) is called parabolic if there exist
positive numbers C∗, c1, c2 such that, after possible re-arrangement, {µj(θ) +
C∗, j ≥ 1} is a positive, non-decreasing, and unbounded sequence for all θ ∈ Θ
and

c1 ≤ µj(θ1) + C∗

µj(θ2) + C∗ ≤ c2 (2.4)

for all θ1, θ2 ∈ Θ.

In particular, if Eq. (2.2) is parabolic, then limj→∞ µj(θ) = +∞ for all θ ∈ Θ, and
there exists an index J ≥ 1 such that, for all θ ∈ Θ and j ≥ J ,

µj(θ) > 0. (2.5)

Indeed, if such index does not exist, then there exists a sequence of θj ∈ Θ, such
that µj(θj) ≤ 0, and hence µj(θj) + C∗ ≤ C∗. By (2.4), for a fixed θ, we have

lim
j→∞

µj(θj) + C∗

µj(θ) + C∗ = 0,

that contradicts the assumption that c1 > 0.

Example 2.1. Let G be a smooth bounded domain in R
d or a smooth compact d-

dimensional manifold with a smooth measure, H = L2(G), and let ∆ be the Laplace
operator on G (with zero boundary conditions if G is a domain). It is known (see,
for example, Safarov and Vassiliev [15] or Shubin [16]) that ∆ has a complete
orthonormal system of eigenfunctions in H, and the corresponding eigenvalues λj
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are negative, can be arranged in decreasing order, and there is a positive number
c◦ such that

lim
j→∞

j−2/d|λj | = c◦. (2.6)

The reader can verify that each of the following equations is diagonalizable and
parabolic:

du − θ∆udt = dWH , θ ≥ a > 0, (2.7)

du − (∆u + θu)dt = dWH , (2.8)

du + (∆2u + θ∆u)dt = dWH . (2.9)

The following result both defines the solution of (2.2) and establishes existence
and uniqueness of the solution.

Theorem 2.1. Assume that Eq. (2.2) is diagonalizable and parabolic, WH is a
cylindrical fractional Brownian motion on a separable Hilbert space H, {hj, j ≥ 1}
is an orthonormal basis in H, and H ≥ 1/2.

If X is a Hilbert space such that H is a dense subset of X and the inclusion
operator j : H → X is Hilbert–Schmidt, then the process u defined by

u(t) =
∑
j≥1

uj(t)hj , (2.10)

where

uj(t) =
∫ t

0

e−µj(θ)(t−s)dWH
hj

(s) (2.11)

is a Gaussian process with values in X.

Proof. The argument is similar to the proof of Proposition 2.1(b). The properties
of the fractional Brownian motion with H > 1/2 imply

Eu2
j (t) = H(2H − 1)e−2µj(θ)t

∫ t

0

∫ t

0

eµj(θ)(s1+s2)|s1 − s2|2H−2ds1ds2;

see, for example, Pipiras and Taqqu [13, formulas (4.1), (4.2)]. By direct computa-
tions,

Eu2
j(t) =

H(2H − 1)
µj(θ)

(∫ t

0

s2H−2e−µj(θ)sds − e−2µj(θ)t

∫ t

0

s2H−2eµj(θ)sds

)

=
H(2H − 1)
|µj(θ)|2H

(∫ µj(θ)t

0

s2H−2e−sds − e−µj(θ)t

∫ t

0

s2H−2e−µj(θ)(t−s)ds

)
.

As limj→∞ µj(θ) = +∞, we find, for every t > 0,

lim
j→∞

∫ µj(θ)t

0

s2H−2e−sds =
∫ ∞

0

s2H−2e−sds = Γ(2H − 1),

lim
j→∞

∣∣∣e−µj(θ)t

∫ t

0

s2H−2e−µj(θ)(t−s)ds
∣∣∣ ≤ lim

j→∞
e−µj(θ)tt2H−1

2H − 1
= 0.
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Hence,

lim
j→∞

|µj(θ)|2H
Eu2

j(t) = H(2H − 1)Γ(2H − 1), (2.12)

and the limit indeed does not depend on t as long as t > 0. It follows from (2.12)
that supj E|uj(t)|2 < ∞ and therefore

E‖u(t)‖2
X =

∞∑
j=1

E|uj(t)|2 ‖hj‖2
X < ∞. (2.13)

If H = 1/2, then WH
hj

is a standard Brownian motion, so that

Eu2
j =

∫ t

0

e−2µj(θ)(t−s)ds and lim
j→∞

|µj(θ)|Eu2
j =

1
2
;

note that passing to the limit H → 1/2 in (2.12) gives the same result.

Definition 2.4. The process u constructed in Theorem 2.1 is called the solution
of Eq. (2.2).

3. The Maximum Likelihood Estimator and its Properties

Consider the diagonalizable equation

du(t) + (A0 + θA1)u(t)dt = dWH(t) (3.1)

with solution u(t) =
∑

j≥1 uj(t)hj given by (2.11); for simplicity, we assume that
u(0) = 0. Suppose that the processes u1(t), . . . , uN(t) can be observed for all t ∈
[0, T ]; as was mentioned in the Introduction, if u is observable, then each uk can be
computed. The problem is to estimate the parameter θ using these observations.

Recall the notation µj(θ) = ρj + νjθ, where ρj and νj are the eigenvalues of
A0 and A1, respectively. Then each uj is a fractional Ornstein–Uhlenbeck process
satisfying

duj(t) = −µj(θ)uj(t)dt + dwH
j (t), uj(0) = 0, (3.2)

and, because of the independence of wH
j for different j, the processes u1, . . . , uN

are (statistically) independent.
Let Γ denote the Gamma-function (see (2.12)). Following Kleptsyna and Le

Breton [7], we introduce the notations

κH = 2HΓ
(

3
2
− H

)
Γ
(

H +
1
2

)
, kH(t, s) = κ−1

H s
1
2−H(t − s)

1
2−H ; (3.3)

λH =
2HΓ(3 − 2H)Γ

(
H + 1

2

)
Γ
(

3
2 − H

) , wH(t) = λ−1
H t2−2H ; (3.4)
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MH
j (t) =

∫ t

0

kH(t, s)dwH
j (s), Qj(t) =

d

dwH(t)

∫ t

0

kH(t, s)uj(s)ds; (3.5)

Zj(t) =
∫ t

0

kH(t, s)duj(s). (3.6)

In particular, MH is a martingale with the quadratic characteristic wH . By a
Girsanov-type formula (see, for example, Kleptsyna et al. [8, Theorem 3]), there
is a probability measure P̃ on (Ω,F) under which the distribution of the vector
(u1, . . . , uN) is the same as the distribution of the vector (wH

1 , . . . , wH
N ) under the

original measure P, and

dP̃

dP
= exp

 N∑
j=1

µj(θ)
∫ T

0

Qj(s)dZj(s) +
N∑

j=1

|µj(θ)|2
2

∫ T

0

Q2
j(s)dwH(s)

 . (3.7)

Note that process Zj is a semi-martingale [7, Lemma 2.1], and so there is
no stochastic integration with respect to fractional Brownian motion in (3.7):∫ T

0 νjQj(s)dZj(s) is an Itô integral. Maximizing the density dP̃/dP with respect
to θ gives the Maximum Likelihood Estimator (MLE) of θ:

θ̂N = −
∑N

j=1

∫ T

0
νjQj(s)

(
dZj(s) + ρjQj(s)dwH(s)

)∑N
j=1

∫ T

0 ν2
j Q2

j(s)dwH(s)
. (3.8)

Under assumption that u1, . . . , uN are observable, the processes Qj, Zj, j =
1, . . . , N are also observable, and hence the estimator θ̂N defined above is
observable. On the other hand, computing (3.8) requires the knowledge of
kH and wH , and is therefore impossible without the knowledge of the Hurst
parameter H .

Notice that, when H = 1/2, we have kH = 1, wH(s) = s, Qj(s) = Zj(s) = uj(s),
and (3.8) becomes

θ̂N = −
∑N

j=1

∫ T

0 νjuj(s)
(
duj(s) + ρjuj(s)ds

)∑N
j=1

∫ T

0
ν2

j u2
j(s)duj(s)

, (3.9)

which is the MLE from [3].
The following is the main result of the paper.

Theorem 3.1. Assume that Eq. (3.1) is diagonalizable and parabolic, and θ ∈ Θ.
Then the following conditions are equivalent:

(1)
∞∑

j=J

ν2
j

µj(θ)
= +∞; (3.10)

(2) lim
N→∞

θ̂N = θ with probability one, (3.11)

where J = min{j : µi(θ) > 0 for all i ≥ j}.
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Proof. Following Kleptsyna and Le Breton [7, Eq. (4.1)], we conclude that

θ̂N − θ = −
∑N

j=1

∫ T

0 νjQj(s)dMH
j (s)∑N

j=1

∫ T

0
ν2

j Q2
j(s)dwH(s)

. (3.12)

Both the top and the bottom on the right-hand side of (3.12) are sums of indepen-
dent random variables; moreover, it is known from [7, p. 242] that

E

(∫ T

0

Qj(s)dMH
j (s)

)2

= E

∫ T

0

Q2
j(s)dwH(s)ds. (3.13)

From the expression for the Laplace transform of
∫ T

0
Q2

j(s)dwH(s)ds (see [7,
Eq. (4.2)]) direct computations show that

lim
j→∞

µj(θ)E
∫ T

0

Q2
j(s)dwH(s)ds =

T

2
> 0 (3.14)

and, with Var(ξ) denoting the variance of the random variable ξ,

lim
j→∞

µ3
j(θ)Var

(∫ T

0

Q2
j(s)dwH(s)ds

)
=

T

2
> 0; (3.15)

a detailed derivation of (3.14) and (3.15) is given in the Appendix, Lemmas A.1
and A.2 respectively.

We now see that if (3.10) does not hold, then, by (3.14), the series∑
j≥1

∫ T

0

ν2
j Q2

j(s)dwH(s)

converges with probability one, which, by (3.12), means that (3.11) cannot hold.
On the other hand, if (3.10) holds, then∑

n≥J

ν2
nµ−1

n(∑n
j=1 ν2

j µ−1
j

)2 < ∞. (3.16)

Indeed, setting an = ν2
nµ−1

n and An =
∑n

j=1 aj , we notice that∑
n≥J

an

A2
n

≤
∑

n≥J+1

(
1

An−1
− 1

An

)
=

1
AJ

.

Then the strong law of large numbers, together with the observation

E

∫ T

0

Qj(s)dMH
j (s) = 0, j ≥ 1,

implies

lim
N→∞

∑N
j=1

∫ T

0 νjQj(s)dMj(s)∑N
j=1 E

∫ T

0
ν2

j Q2
j(s)dwH(s)

= 0 with probability one.
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Next, it follows from (3.16) and the parabolicity assumption that∑
n≥J

ν4
nµ−3

n(∑n
j=J ν2

j µ−1
j

)2 < ∞, (3.17)

because |νj/µj(θ)| stays bounded for j ≥ J . Then another application of the strong
law of large numbers implies that

lim
N→∞

∑N
j=1

∫ T

0 ν2
j Q2

j(s)dwH(s)∑N
j=1 E

∫ T

0
ν2

j Q2
j(s)dwH(s)

= 1 (3.18)

with probability one, and (3.11) follows.

Corollary 3.1. If Eq. (3.1) is diagonalizable and parabolic and if (3.10) holds,
then

lim
N→∞

√√√√ N∑
j=J

ν2
j

µj(θ)
(θ̂N − θ) = ζ (3.19)

in distribution, where ζ is a Gaussian random variable with zero mean and variance
2/T .

Proof. Consider the sequence of random processes

XN (t) =

∑N
j=1

∫ t

0 νjQj(s)dMj(s)(∑N
j=1 E

∫ T

0 ν2
j Q2

j(s)dwH(s)
)1/2

,

and let X(t) = w(t)/T , where w is a standard Brownian motion. It is known
from Norros et al. [12, Theorem 3.1] that each MH

j is a Gaussian martingale with
independent increments and quadratic variation 〈MH

j 〉(t) = wH(t). Therefore, each
XN is a square-integrable martingale with quadratic variation

〈XN 〉(t) =

∑N
j=1

∫ t

0 ν2
j Q2

j(s)dwH(t)∑N
j=1 E

∫ T

0
ν2

j Q2
j(s)dwH(s)

.

By (3.18),

lim
N→∞

〈XN 〉(T ) = 1 = 〈X〉(T ).

By a limit theorem for martingales (see, for example, Jacod and Shiryaev [6, Theo-
rem VIII.4.17]), limN→∞ XN (T ) = X(T ) in distribution. It remains to notice that,
by (3.14),

lim
N→∞

∑N
j=1 ν2

j /µj(θ)∑N
j=1 E

∫ T

0 ν2
j Q2

j(s)dwH(s)
=

2
T

.

By Corollary 3.1, note that the rate of convergence of the estimators θ̂N does not
depend on the Hurst parameter H .
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4. Examples

First, we discuss how the presence of the spatial covariance in the noise term affects
the model.

Let us consider a more general equation

du(t) = (A0 + θA1)u(t)dt + BdWH(t),

where B is a linear operator, with BB� representing the spatial covariance of the
noise process. If B−1 exists, the equation is reduced to (3.1) by considering v =
B−1u, Ã0 = B−1A0B, Ã1 = B−1A1B:

dv(t) = (Ã0 + θÃ1)v(t)dt + dWH(t);

to proceed, we certainly need to assume that this equation is diagonalizable and
parabolic.

If B−1 does not exist, we have two possibilities:

(1) (u0, hi)0 = 0 for every i such that Bhi = 0. In this case, ui(t) = 0 for all
t > 0, so that we can factor out the kernel of B and reduce the problem to
invertible B.

(2) (u0, hi)0 �= 0 for some i such that Bhi = 0. In this case, ui(t) = ui(0)e−ρit−νiθt

and θ is determined exactly from the observations of ui(t):

θ =
1

νi(t − s)
ln

ui(s)
ui(t)

− ρi

νi
, t �= s.

Next, let us formulate condition (3.10) in terms of the orders of the operators in
the equation. Let A0, A1 be differential or pseudo-differential operators, either on
a smooth bounded domain in R

d or on a smooth compact d-dimensional manifold,
and let m0, m1, be the orders of A0, A1 respectively, so that 2m = max(m0, m1).
Then, under rather general conditions we have

lim
j→∞

|νj |jm1/d = c1, lim
j→∞

µj(θ)j2m/d = c(θ) (4.1)

for some positive numbers c1, c(θ); see, for example, Il’in [5] or Safarov and
Vassiliev [15].

If (4.1) holds, then condition (3.10) becomes

m1 ≥ m − (d/2), (4.2)

which, in the case H = 1/2, was established by Huebner and Rozovskii [3]. On the
other hand, Theorem 3.1 covers operators with more exotic eigenvalues, such as
νj = j ln j or νj = ej.

Note that, at least as long as H ≥ 1/2, conditions (3.10) and (4.2) do not
involve H .

Let us now look at some concrete examples.
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(1) Consider the equation

du − θuxxdt = dWH , 0 < t < T, x ∈ (0, 1),

with zero initial and boundary conditions. This equation was also studied by
Prakasa Rao [14].

Clearly, νj = π2j2, ρj = 0, µj(θ) = θπ2j2. We take Θ = (θ0, θ1) for some
0 < θ0 < θ1. Then

uj(t) =
∫ T

0

e−θπ2j2(t−s)dwH
j ,

θ̂N = −
∑N

j=1 j2
∫ T

0
Qj(t)dZj(t)∑N

j=1

∫ T

0 π2j4Q2
j(t)dwH(t)

,

lim
N→∞

N3/2(θ̂N − θ) = N (0, 6θ/(π2T )),

where N (a, σ2) is a normal random variable with mean a and variance σ2, and the
convergence is in distribution.

(2) Consider the equation

du − (∆u + θu)dt = dWH , 0 < t < T, x ∈ G ⊂ R
d,

with zero initial and boundary conditions and d ≥ 2. Denote by λj , j ≥ 1 the
eigenvalues of the Laplace operator ∆; recall that λj < 0. Clearly, νj = −1, ρj =
−λj , µj(θ) = −λj − θ. We take Θ = (θ0, θ1) for some θ0 < θ1; there are no
restrictions on the sign of θ. Then

uj(t) =
∫ T

0

e(λj+θ)(t−s)dwH
j ,

θ̂N = −
∑N

j=1

∫ T

0
Qj(t)(dZj(t) − λjQj(t)dwH(t))∑N

j=1

∫ T

0 Q2
j(t)dwH(t)

,

lim
N→∞

Ψd(N)(θ̂N − θ) = N (0, σ2
d),

where

Ψd(N) =

{√
ln N, if d = 2,

N (d−2)/(2d), if d > 2,
σ2

d =


2c

T
, if d = 2,

2c

T

(
1 − 2

d

)
, if d > 2,

and c is from (2.6).
If d = 1, then (4.2) does not hold and θ̂N is not a consistent estimator of θ.
(3) Consider the equation

du + (∆2u + θ∆u)dt = dWH , 0 < t < T, x ∈ G ⊂ R
d,
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with zero initial and boundary conditions:

u|t=0 = u|∂G = ∆u|∂G = 0.

As before, denote by λj the eigenvalues of the Laplacian ∆. Clearly, νj = −λj ,
ρj = λ2

j , µj(θ) = λ2
j + θλj . We take Θ = (θ0, θ1) for some θ0 < θ1; there are no

restrictions on the sign of θ. Then, for every d ≥ 1,

uj(t) =
∫ T

0

e−(λ2
j+θλj)(t−s)dwH

j ,

θ̂N = −
∑N

j=1

∫ T

0
λjQj(t)(dZj(t) − λ2

jQj(t)dwH(t))∑N
j=1

∫ T

0 λ2
jQ

2
j(t)dwH(t)

,

lim
N→∞

√
N(θ̂N − θ) = N (0, 2/T ).

5. Other Possible Estimators

The maximum likelihood estimator (3.8) has three features that are clearly attrac-
tive: consistency, asymptotic normality, and absence of stochastic integration with
respect to fractional Brownian motion. On the other hand, actual implementation
of (3.8) is problematic: when H > 1/2, computing the processes Qj and Zj is cer-
tainly nontrivial. Estimator (3.9) is defined for all H ≥ 1/2 and contains only the
processes uj , but, when H > 1/2, is not an MLE and is even harder to implement
because of the stochastic integral with respect to uj.

With or without condition (3.10), a consistent estimator of θ is possible in the
large time asymptotic: for every j ≥ 1,

lim
T→∞

∫ T

0 νjQj(s)
(
dZj(s) + ρjQj(s)dwH(s)

)∫ T

0 ν2
j Q2

j(s)dwH(s)
= −θ (5.1)

with probability one [7, Proposition 2.2]. For H > 1/2, implementation of this
estimator is essentially equivalent to the implementation of (3.8).

An alternative to (5.1) was suggested by Maslowski and Posṕı̌sil [11] using the
ergodic properties of the OU process. Let us first illustrate the idea on a simple
example.

If a > 0 and w = w(t) is a standard one-dimensional Brownian motion, then the
OU process dX = −aX(t)dt+dw(t) is ergodic and its unique invariant distribution
is normal with zero mean and variance (2a)−1. In particular,

lim
T→∞

1
T

∫ T

0

X2(t)dt =
1
2a

(5.2)

with probability one, and so

ã(T ) =
T

2
∫ T

0 X2(t)dt
(5.3)
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is a consistent estimator of a in the long-time asymptotic. Note that the maximum
likelihood estimator in this case is

â(T ) = −
∫ T

0
X(t)dX(t)∫ T

0 X2(s)ds
(5.4)

and is strongly consistent for every a ∈ R [10, Theorem 17.4].
Similarly, if a > 0, then the fractional OU process

dX(t) = −aX(t)dt + dwH(t), X(0) = 0 (5.5)

is Gaussian, and, by (2.12), converges in distribution, as t → ∞, to the Gaussian
random variable with zero mean and variance c(H)a−2H , where

c(H) = H(2H − 1)Γ(2H − 1); (5.6)

notice that, in the limit H↘1/2, we recover the result for the usual OU process.
Further investigation shows that, similar to (5.2),

lim
T→∞

1
T

∫ T

0

X2(s)ds =
c(H)
a2H

(see [11]). As a result, for every j such that θνj + ρj > 0, we have

lim
T→∞

1
T

∫ T

0

u2
j(t)dt =

c(H)
(θνj + ρj)2H

(5.7)

with probability one. Under an additional assumption that νj �= 0, we get an
estimator of θ

θ̃(j)(T ) =
1
νj

(
c(H)T∫ T

0 u2
j(t)dt

) 1
2H

− ρj

νj
. (5.8)

This estimator is strongly consistent in the long time asymptotic: limT→∞ |θ̃(j)(T )−
θ| = 0 with probability one [11, Theorem 5.2]. While not a maximum likelihood esti-
mator, (5.8) is easier to implement computationally than (3.8). If, in Theorem 2.1,
we have A0 = 0 and νj > 0, then a version of (5.9) exists using all the Fourier
coefficients uj , j ≥ 1:

θ̃(T ) =

(
c(H)T

∑∞
j=1 ν−2H

j∑∞
j=1

∫ T

0
u2

j(t)dt

) 1
2H

; (5.9)

see [11, Theorem 5.2].
An interesting open question related to both (3.8) and (5.8), (5.9) is how to

combine estimation of θ with estimation of H .
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Appendix A

Below, we prove equalities (3.14) and (3.15).

Lemma A.1. For every θ ∈ Θ and H ∈ [1/2, 1),

lim
j→∞

µj(θ)E
∫ T

0

Q2
j(s)dwH(s) =

T

2
.

Proof. Denote by ΨH
T (a, µj) the Laplace transform of

∫ T

0
Q2

j(s)dwH(s), namely

ΨH
T (a, µj(θ)) = E exp

{
−a

∫ T

0

Q2
j(s)dwH(s)

}
, a > 0. (A.1)

We will use the expression for ΨH
T from [7, p. 242], and write it as follows

ΨH
T (a, µj) = αe

(µj−α)T
2

[
∆H

T (µj , α)
]− 1

2 ,

where µj = µj(θ), α :=
√

µ2
j + 2a,

∆H
T (µj , α) =

παTe−αT (α2 − µ2
j)

4 sin(πH)
I−H

(
αT

2

)
IH−1

(
αT

2

)
+ e−αT

[
α sinh

(
αT

2

)
+ µj cosh

(
αT

2

)]2

and Ip is the modified Bessel function of the first kind and order p.
Note that

E

∫ T

0

Q2
j(s)dwH(s) = −∂ΨH

T (a, µj)
∂a

∣∣∣∣∣
a=0

.

Direct evaluations (for example, using Mathematica computer algebra system) give

∂ΨH
T (a, µj)
∂a

∣∣∣∣∣
a=0

=
2 + 2eµjT (1 − µjT )− µjπTIH−1

(
µjT
2

)
I−H

(
µjT
2

)
csc(Hπ)

4µ2
je

µjT
,

where csc(x) = 1/ sin(x). By combining formulas (6.106), (6.155) and (6.162) in [1],
we conclude that, for all p ∈ (−1, 1), p �= 0, we have Ip(x) ∼ ex/

√
2πx, x → ∞, i.e.

lim
x→+∞

√
2πx e−xIp(x) = 1. (A.2)

Therefore

∂ΨH
T (a, µj)
∂a

∣∣∣∣∣
a=0

∼ 2 + 2eµjT (1 − µjT ) − eµjT csc(Hπ)
4µ2

je
µjT

∼ − T

2µj
, j → ∞,

lim
j→∞

µj
∂ΨH

T (a, µj)
∂a

∣∣∣∣∣
a=0

= −T

2
,

and the lemma is proved.
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Lemma A.2. For every θ ∈ Θ and H ∈ [1/2, 1)

lim
j→∞

µ3
j (θ)Var

(∫ T

0

Q2
j(s)dwH(s)

)
=

T

2
.

Proof. Note that

V := Var

(∫ T

0

Q2
j(s)dwH(s)

)
=

[
∂2ΨH

T (a, µj)
∂a2

−
(

∂ΨH
T (a, µj)
∂a

)2
]

a=0

, (A.3)

with ΨH
T from (A.1). Direct evaluation of the right-hand side of (A.3) (for example,

using Mathematica computer algebra system) gives

V =
1

8µ4
je

2Tµj

(
2 − 8eµjT (1 + µjT ) + 2e2µjT (−5 + 2µjT )

+ πµjT csc(πH)

[
− 2eµjT µjTI1−H

(
µjT

2

)
IH−1

(
µjT

2

)

+ I−H

(
µjT

2

){
4(−1 + eµjT (1 + µjT ))IH−1

(
µjT

2

)

− 2eµjT µjTIH

(
µjT

2

)
+ πµjTI2

H−1

(
µjT

2

)
I−H

(
µjT

2

)
csc(Hπ)

}])
,

where csc(x) = 1/ sin(x) and Ip is the modified Bessel function of the first kind and
order p.

Using (A.2), we conclude that

lim
j→∞

µ3
j (θ)V = lim

j→∞
µ3

j

(
−10 + 4 csc(Hπ) + csc2(Hπ)

8µ4
j

+
1

4µ4
je

2µjT

− csc(Hπ) + 2 + 2µjT

2µ4
je

µjT
+

T

2µ3
j

)
=

T

2

and complete the proof of the lemma.
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