MATH 125(S. Lototsky)

Practice Problems: Application of Differentiation, Integration

1. Find the minimal and maximal values of the function $f(x) = x^4 + 4x^3 + 4x^2$ on the following sets:

(a) [-1/2, 1/2];

(b) $(-2, -0.5] \cup (0, 1]$ (The symbol \cup means the union of the two sets, that is, you consider the values of f both in [-2, -0.5) and in (0, 1].)

(c) $(-\infty, +\infty)$.

2. Suppose that $f'(x) = x(x-1)^2(x+1)^3(x-2)(x+3)$. Find the intervals where the function f is increasing and decreasing, and the points of local min and max. How will your answer change if $f'(x) = x(x-1)^2(x+1)^3(2-x)(x+3)$?

3. Find all asymptotes of the following functions:

(a) $f(x) = \frac{\sqrt{x^2 + 1}}{x - 1}$. (b) $f(x) = \frac{x^2}{x^2 - 1}$.

(c)
$$f(x) = \frac{x^3 + x^2 + 2x + 1}{x^2 + 1}$$
.
A Find the largest area of

4. Find the largest area of the rectangle that can be inscribed in a right triangle with sides 3, 4, and 5 cm, if

- (a) the rectangle and the triangle share right angle.
- (b) one of the sides of the rectangle is on the hypothenuse of the triangle.
 - 5. Evaluate the following limit:

$$\lim_{n \to \infty} \frac{3}{n} \sum_{k=0}^{n} \sqrt{1 + \frac{3k}{n}}.$$

6. Compute f'(x) if

$$f(x) = \int_{\sin x}^{x^2 + 1} \cos(\sqrt{t}) dt.$$

7. Evaluate the following integrals:

(a) $\int_{0}^{\sqrt{\pi}} x \sin(x^2) dx$ (b) $\int x \sin(2x) dx$ (c) $\int_{0}^{1} \frac{x^2 - 1}{\sqrt{x}} dx$ (d) $\int_{0}^{1} \frac{x dx}{\sqrt{1 + 5x^2}}$ (e) $\int_{0}^{\pi/2} \frac{\cos(x)}{(5 - \sin(x))^2} dx$ 8. Show that $\frac{1 + \sqrt{2}}{4} < \int_{\pi/4}^{\pi/2} \frac{\sin(x)}{x} dx < \frac{\sqrt{2}}{2}.$

9. Evaluate the following limit:

$$\lim_{h \to 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^2} dt.$$

10. Sketch the graph of the function $f(x) = \frac{x}{2+3x^2}$.

Answers

Watch out for misprints...

1. $f(x) = x^2(x+2)^2$, f'(x) = 4x(x+1)(x+2). (a) Max is f(1/2), min is 0. (b) Max is f(1), min does not exist (would be 0, but points -2 and 0 are excluded from the set. (c) Max does not exist (f can be as large as you want), min is 0.

2. Increasing on $(-\infty, 3] \cup [-1, 0] \cup [2, +\infty)$, decreasing on $[-3, -1] \cup [0, 2]$; points of local max are -3, 0; points of local min are -1, 2. If you have (2 - x) instead of (x - 2), then min/max and increading/decreasing will switch places.

3. (a) $y = \pm 1$ as $x \to \pm \infty$; x = 1. (b) $x = \pm 1$; y = 1. (c) y = x + 1.

4. Denote by x and y the sides of the rectangle. Then, in (a), you maximize xy given 4x+3y = 12, and, in (b), you maximize xy given 12x + 25y = 60 (depending on your notations, you might have x and y switched. The answer is 3 cm^2 in both cases.

5. $3 \int_0^1 \sqrt{1+3x} dx = 14/3.$

6. $f'(x) = 2x\cos(\sqrt{x^2+1}) - \cos(x) \cdot \cos\sqrt{\sin(x)}$.

7. (a) $-0.5\cos(x^2)|_0^{\sqrt{\pi}} = 1$ (b) $(\sin(2x) - 2x\cos(2x))/4 + c$ (by parts) (c) -8/5 (d) $(\sqrt{6} - 1)/5$ (e) $1/(5-u)|_0^1 = 1/20$ with $u = \cos(x)$.

8. From above — by left point rule; from below — by trapezoidal rule with no extra partition of the interval.

9. $f'(2) = \sqrt{5}$, where $f(x) = \int_0^x \sqrt{1+t^2} dt$.

10. Function is odd; for x > 0, have local (in fact, global) max at $\sqrt{2/3}$, and inflection at $\sqrt{2}$; horizontal asymptote y = 0.