MATH 125(S. Lototsky)

Practice Problems: Application of Differentiation, Integration

1. Find the minimal and maximal values of the function $f(x)=x^{4}+4 x^{3}+4 x^{2}$ on the following sets:
(a) $[-1 / 2,1 / 2]$;
(b) $(-2,-0.5] \cup(0,1]$ (The symbol \cup means the union of the two sets, that is, you consider the values of f both in $[-2,-0.5)$ and in (0,1$]$.)
(c) $(-\infty,+\infty)$.
2. Suppose that $f^{\prime}(x)=x(x-1)^{2}(x+1)^{3}(x-2)(x+3)$. Find the intervals where the function f is increasing and decreasing, and the points of local min and max. How will your answer change if $f^{\prime}(x)=x(x-1)^{2}(x+1)^{3}(2-x)(x+3)$?

3 . Find all asymptotes of the following functions:
(a) $f(x)=\frac{\sqrt{x^{2}+1}}{x-1}$.
(b) $f(x)=\frac{x^{2}}{x^{2}-1}$.
(c) $f(x)=\frac{x^{3}+x^{2}+2 x+1}{x^{2}+1}$.
4. Find the largest area of the rectangle that can be inscribed in a right triangle with sides 3, 4 , and 5 cm , if
(a) the rectangle and the triangle share right angle.
(b) one of the sides of the rectangle is on the hypothenuse of the triangle.

5 . Evaluate the following limit:

$$
\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{k=0}^{n} \sqrt{1+\frac{3 k}{n}}
$$

6. Compute $f^{\prime}(x)$ if

$$
f(x)=\int_{\sin x}^{x^{2}+1} \cos (\sqrt{t}) d t
$$

7. Evaluate the following integrals:
(a) $\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x$
(b) $\int x \sin (2 x) d x$
(c) $\int_{0}^{1} \frac{x^{2}-1}{\sqrt{x}} d x$
(d) $\int_{0}^{1} \frac{x d x}{\sqrt{1+5 x^{2}}}$
(e) $\int_{0}^{\pi / 2} \frac{\cos (x)}{(5-\sin (x))^{2}} d x$
8. Show that

$$
\frac{1+\sqrt{2}}{4}<\int_{\pi / 4}^{\pi / 2} \frac{\sin (x)}{x} d x<\frac{\sqrt{2}}{2}
$$

9. Evaluate the following limit:

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^{2}} d t
$$

10. Sketch the graph of the function $f(x)=\frac{x}{2+3 x^{2}}$.

Answers

Watch out for misprints...

1. $f(x)=x^{2}(x+2)^{2}, f^{\prime}(x)=4 x(x+1)(x+2)$. (a) Max is $f(1 / 2)$, \min is 0 . (b) Max is $f(1)$, min does not exist (would be 0 , but points -2 and 0 are excluded from the set. (c) Max does not exist (f can be as large as you want), min is 0 .
2. Increasing on $(-\infty, 3] \cup[-1,0] \cup[2,+\infty)$, decreasing on $[-3,-1] \cup[0,2]$; points of local max are $-3,0$; points of local min are $-1,2$. If you have $(2-x)$ instead of $(x-2)$, then min/max and increading/decreasing will switch places.
3. (a) $y= \pm 1$ as $x \rightarrow \pm \infty ; x=1$. (b) $x= \pm 1 ; y=1$. (c) $y=x+1$.
4. Denote by x and y the sides of the rectangle. Then, in (a), you maximize $x y$ given $4 x+3 y=12$, and, in (b), you maximize $x y$ given $12 x+25 y=60$ (depending on your notations, you might have x and y switched. The answer is $3 \mathrm{~cm}^{2}$ in both cases.
5. $3 \int_{0}^{1} \sqrt{1+3 x} d x=14 / 3$.
6. $f^{\prime}(x)=2 x \cos \left(\sqrt{x^{2}+1}\right)-\cos (x) \cdot \cos \sqrt{\sin (x)}$.
7. (a) $-\left.0.5 \cos \left(x^{2}\right)\right|_{0} ^{\sqrt{\pi}}=1$ (b) $(\sin (2 x)-2 x \cos (2 x)) / 4+c$ (by parts) (c) $-8 / 5$ (d) $(\sqrt{6}-1) / 5$ (e) $1 /\left.(5-u)\right|_{0} ^{1}=1 / 20$ with $u=\cos (x)$.
8. From above - by left point rule; from below - by trapezoidal rule with no extra partition of the interval.
9. $f^{\prime}(2)=\sqrt{5}$, where $f(x)=\int_{0}^{x} \sqrt{1+t^{2}} d t$.
10. Function is odd; for $x>0$, have local (in fact, global) max at $\sqrt{2 / 3}$, and inflection at $\sqrt{2}$; horizontal asymptote $y=0$.
