MATH 125 (S. Lototsky)

Practice Problems: Limits and Derivatives

1. Compute the following limits.
(a) $\lim _{x \rightarrow 2} \frac{2 x^{2}-x-6}{x-2}$
(b) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}$
(c) $\lim _{h \rightarrow 0} \frac{\tan (\pi / 4+h)-1}{h}$
(d) $\lim _{x \rightarrow 1} \frac{x-1}{\left|x^{2}-1\right|}$
(e) $\lim _{x \rightarrow 1^{+}} \frac{\sin \left(\frac{\pi}{2 x}\right)}{\sqrt{x^{5}+3}}$.
2. Use the definition of derivative to compute $f^{\prime}(2)$, where $f(x)=\sqrt{x}$.
3. Compute the derivative of the following function:

$$
f(x)=\frac{\sqrt{x^{2}+1}+x}{\cos \left(\sin ^{3}(x)\right)} .
$$

4. Compute the third derivative of $f(x)=\frac{x-1}{x+1}$.
5. Compute $y^{\prime}(x)$ if $x^{2} y+x y^{5}=2$.
6. Let $f(x)=x^{2}+2 x-1$ and $\varepsilon=0.001$. Find δ so that $|f(x)-7|<\varepsilon$ for all x satisfying $0<|x-2|<\delta$.
7. For what x is the function $f(x)=\tan \sqrt{x^{2}-1}$ continuous?
8. For what values of A will the function

$$
f(x)= \begin{cases}x^{3}, & x \leq 0 \\ A x+1, & x>0\end{cases}
$$

be differentiable at $x=0$?
9. For what values of A and B will the function

$$
f(x)= \begin{cases}x^{3}, & x \leq 2 \\ A x+B, & x>2\end{cases}
$$

be differentiable at $x=2$?
10. Find an approximate value of $(16.00008)^{1 / 4}$.
11. Suppose that $f=f(x)$ is a differentiable function; $f(1)=2, f^{\prime}(1)=-1$. Define $g(x)=$ $x+\sqrt{2+f\left(x^{2}\right)}$. Write the equation of the tangent line to the curve $y=g(x)$ at the point $(1,3)$.
12. True of false: equation $x^{3}+2 x=4$ has a solution on $(1,2)$? Explain your answer.
13. Sketch the graph of the function with the following properties: f has a limit at $x=0$ but is not continuous at $x=0 ; f$ is continuous from the left at $x=1$, but $\lim _{x \rightarrow 1} f(x)$ does not exist; f has a vertical asymptote at $x=2, \lim _{x \rightarrow 3} f(x)=-\infty ; \lim _{x \rightarrow 4^{-}} f(x)=+\infty ; \lim _{x \rightarrow 4^{+}} f(x)=-\infty$.
14. Boat A is 90 miles west of boat B . At noon, boat A starts going east at 15 miles per hour and boat B starts going north at 10 miles per hour. Assume that each boat moves with constant velocity all the time.
(a) At 4 pm , is the distance between the boats increasing or decreasing?
(b) Is there a moment before 5 pm when the distance between the boats is not changing?

Answers

Watch out for misprints...

1. (a) $7\left(2 x^{2}-x-6=(x-2)(2 x+3)\right)$
(b) $2(x-1=(\sqrt{x}-1)(\sqrt{x}+1)$
(c) 2 (it is the derivative of $\tan x$ at $x=\pi / 4$
(d) does not exist (you get $1 / 2$ from the right and $-1 / 2$ from the left.)
(e) $\mathbf{1 / 2}$ (just put $x=1$: the function is continuous there).
2. $\frac{1}{2 \sqrt{2}}$ (you compute $\lim _{x \rightarrow 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$; similar to 1 (b).)
3.

$$
f^{\prime}(x)=\frac{x\left(1+x^{2}\right)^{-1 / 2}+1}{\cos \left(\sin ^{3}(x)\right)}+\frac{\left(\sqrt{1+x^{2}}+x\right) \cdot 3 \sin ^{2}(x) \cos (x) \sin \left(\sin ^{3}(x)\right)}{\cos ^{2}\left(\sin ^{3}(x)\right)}
$$

(no comments...)
4. $\frac{12}{(\mathbf{x}+1)^{4}}\left(f(x)=1-\frac{2}{x+1}.\right)$
5. $2 x y+x^{2} y^{\prime}+y^{5}+5 x y^{4} y^{\prime}=0 ; \mathbf{y}^{\prime}(x)=-\frac{2 x y+y^{5}}{x^{2}+5 x y^{4}}$ (implicit differentiation).
6. For example, $\delta=\varepsilon / 7(|f(x)-7|=|(x-2)(x+4)|$ and $|x+4|<7$ if x is near 2.)
7. $|x| \geq 1$ and $x \neq \pm \sqrt{1+(\pi / 2+\pi n)^{2}}, n=0, \pm 1, \pm 2, \ldots$ (that's the domain of the function.)
8. For no A (the function is not continuous at 0).
9. $\mathbf{A}=\mathbf{1 2}, \mathbf{B}=-\mathbf{1 6}$ (you need $8=2 A+B$ for continuity and $12=A$ for the derivative to exist).
10. $\mathbf{2}+\mathbf{2 . 5} \cdot \mathbf{1 0}^{-6}=\mathbf{2 . 0 0 0 0 0 2 5}$ (linear approximation with $f(x)=x^{1 / 4}, a=16, \Delta x=8$. $10^{-5} ; f^{\prime}(a)=1 / 32$.)
11. $\mathbf{y}=\mathbf{3}-(\mathbf{x}-\mathbf{1}) / \mathbf{2}\left(g^{\prime}(x)=1+x f^{\prime}\left(x^{2}\right)\left(2+f\left(x^{2}\right)\right)^{-1 / 2} ; g^{\prime}(1)=-1 / 2\right)$.
12. True. (By intermediate value theorem)
13. There are many correct solutions.
14. (a) Decreasing (b) Yes: some time between 4:09 and 4:10 pm.
(Denote by d the distance between the boats, and by x and y, the distances from the boats A and B to the initial position of the boat B . Then $d^{2}=x^{2}+y^{2} ; d=(x \dot{x}+y \dot{y}) / d$. You know that $\dot{x}=-15$, because A is approaching the initial position of $\mathrm{B}, \dot{y}=10$, and at $4 \mathrm{pm}, x=30, y=40$, so that $\dot{d}=-1$. Since $x(t)=90-15 t, y(t)=10 t$, you can find t when $\dot{d}=0$; it is about 4.153 hours.)

