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1 Introduction

Definitive work on permutation testing by Willem van Zwet, his students
and collaborators, has given us a rich collection of tools for probability and
statistics. We have come upon a series of variations where randomization
naturally takes place over a subset of all permutations. The present paper
gives two examples of sets of permutations defined by restricting positions.

Throughout, a permutation π is represented in two-line notation

1 2 3 . . . n

π(l) π(2) π(3) ••• τr(n)

with π(i) referred to as the label at position i. The restrictions are specified
by a zero-one matrix Aij of dimension n with Aij equal to one if and only
if label j is permitted in position i. Let SA be the set of all permitted
permutations. Succinctly put:

(1.1) SA = {π : UUAiπ{i) = 1}

Thus if A is a matrix of all ones, SA consists of all n! permutations.

Setting the diagonal of this A equal to zero results in derangement, permu-

tations with no fixed points, i.e., no points i such that π(i) = i.
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The literature on the enumerative aspects of such sets of permutations is
reviewed in Section 2, which makes connections to permanents, rook poly-
nomials and computational complexity.

Section 3 describes statistical problems where such restricted sets arise
naturally. Consider a test of independence based on paired data
(Xi, Yi), (X2, Y2) {Xn, Yn)> Suppose the data is truncated in the following
way:

For each x there is a known set I(x) such that the pair (X, Y) can be
observed if and only if Y E I(X). For example, a motion detector might
only be able to detect a velocity Y which is neither too slow nor too fast.
Once movement is detected the object can be measured yielding X. Of
course, such truncation usually induces dependence. Independence may be
tested in the following form: Does there exist a probability measure μ on
the space where Y is observed such that

{1.2) P{YieBi,l<i<n\Xi,Yn

for all B{ c I{Xi). Under assumption (1.2), given the unpaired data {X{
any permutation π with {Yπ(j) G /(Xi), 1 < ΐ < n} is equally likely for the
paired data (X;, Yπ(i)), 1 < i < n. This allows any standard test of indepen-
dence to be quantified by its permutation distribution using SA of (1.1) with
A defined by

if
A i i ~ Λ 0 else

This example raises the problem of developing a theory of the distribution
of rank statistics such as Kendall's tau or

2 = 1

when π is chosen uniformly in SA
In Section 3 we discuss natural examples where the restriction matrix A

has an interval structure (the ones in each row are contiguous). For one-sided
intervals some of the standard limit theory can be pushed through, although
much remains to be done. A classical contingency table with structural zeros
of Karl Pearson is treated as an example.

For two-sided intervals, we offer an exchangeable pair so that Stein's
method can be used. The exchangeable pair gives a Monte Carlo Markov
chain for calibrating the permutation distribution. A red-shift data set of
Efron and Petrosian (1998) is treated as an example.

Permutations with restricted position appear in a different guise in skill
scoring, a technique for evaluation of taste testing and extra sensory per-
ception experiments with feedback to subjects permitted. This application
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is reviewed in Section 4. Some of the tools developed to prove the van der
Waerden permanent conjecture are applied here to give a simple proof of a
natural monotonicity conjecture.

We hope that these two examples of permutation testing with restricted
positions will interest Bill. This part of the subject can certainly use his
help.

2 Permanents

Let A be a zero-one square matrix of dimension n. The number of elements

in SA of (1.1) is determined by the permanent of A:

yZi.oj \&A\ ~

The sum in (2.1) is over all permutations in the symmetric group. Thus
the permanent is like the determinant without signs. There is a large math-
ematical literature on permanents. We review some of this pertaining to
matching theory (Section 2.1), rook theory (Section 2.2) and complexity
theory (Section 2.3).

We believe that many of the nice developments in permutation enu-
meration and testing will work out nicely for the case of interval restricted
permutations. An example, Fibonacci permutations, is developed in Section
2.4. It may be consulted now for motivation.

2.1 Bipartite Matchings

Let [n] = {1,2,..., n} and [n1] = {I7,2',..., n'} be two disjoint n element
sets(n — n'). A bipartite graph G is specified by giving a set of undirected
edges ε = {(ii,ii), (^2^2) (^e^e)} For example, when n = 3 the graph
might appear as:

A matching in G is a set of vertex disjoint edges. Thus (1, l')(2,3') is a

matching in the figure above. A perfect matching is a matching containing

n edges. There are three perfect matchings in the figure above.

There is a one-to-one correspondence between perfect matchings and the

set SA of (1.1) when A is taken as the adjacency matrix of the graph G.
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Thus for the figure above:

1' 2' 3'

1 1 1 0

A = 2 1 1 1

3 0 1 1

and Per (A) = 3. This correspondence allows standard graph theory algo-
rithms to be used for permutations with restricted positions. For example,
given a restriction matrix A there is a polynomial time algorithm (order
n2 5/y/logn) for finding if there exists a perfect matchings using the widely
available algorithm for solving the assignment problem of combinatorial op-
timization (see Cook (1998)).

Naively computing the permanent from its definition (2.3) takes n.nl
steps. Ryser's algorithm (see van Lint and Wilson (1992); theorem 11.2)
improves this to order n.271. As discussed in Section 2.3 below, no substantial
improvement can be expected for general restriction matrices (the problem
is #-P complete). For some special cases (Sections 2.2,3.3,4.1) enumeration
is feasible. For matrices A with row sums ri, Γ2,..., rn, van Lint and Wilson
(1992 theorem 11.3) gives the bound

Per{A) <Π? = 1 (r i ) !^ .

Bipartite matching is the easiest case of matching theory in general graphs.

Many further results applications and references are collected in the splendid

book by Lovasz and Plummer (1986).

2.2 Rook Theory

This is an algebraic technique for enumerating SA The classical setting is
a set of squares B of an n x n chess board. Let r(B,k) be the number of
ways of placing k non-attacking rooks on the squares of B (that is, choosing
k squares in B no two in the same row or column). A board B is identified
with a bipartite graph G with edge (ΐ,i') if and only if {i,i') is in B. Thus
r(B, k) is the number of matchings with k edges.

The rook polynomial r(G,x) is defined as

(2.4) r(G,x) =

Thus the number of perfect matchings is the value r(G,0). Rook poly-
nomials have been extensively studied. Stanley (1986, Chapter 2) gives a
useful treatment of the essentials including extensive references to the work
of Goldman, Joichi, White.
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Riordan (1958) reviews the extensive classical literature. Godsil (1981)
and Lovasz/Plummer (1986) treat the generalization to matching polynomi-
als of a general graph due to Heilmann-Lieb.

Rook and matching polynomials satisfy useful recurrences, have real ze-
roes and, for neat graphs, give rise to orthogonal polynomials.

2.3 Complexity Theory

Evaluation of the permanent of a square matrix is a celebrated problem in

modern complexity theory. Indeed, Valiant (1979) used this as the first ex-

ample of a #P-complete problem. Recall (Garey and Johnson, 1978) that

NP-complete problems have "yes" or "no" answers, e.g.,"Is there some sub-

set sum of this list of integers equal to 137?" The class of #P-complete

problems are counting problems "How many subset sums are equal to 137?"

For bipartite matching there is a fast way to check existence, but the count-

ing problem is #P-complete; if a polynomial time algorithm exists then

thousands of other intractable problems (e.g., computing the volume of a

convex polyhedra) can be solved in polynomial time. A review of the work

on the permanent from a complexity viewpoint can be found in Jerrum and

Sinclair(1989) or Sinclair (1993).

Modern computer science has produced efficient randomized algorithms

for approximating the permanent of a dense bipartite graph (every vertex

having degree at least | ) . These algorithms perform a random walk on the

set of perfect matchings and almost matchings (at most one edge missing).

It has been proved that these walks converge rapidly and allow efficient

selection of an essentially random perfect matching. This makes Monte

Carlo quantification of the tests outlined in the introduction feasible for

dense graphs.(Jerrum and Sinclair (1989), Sinclair (1993))

Unfortunately, arguments used by Jerrum and Sinclair and later workers

really seem to depend on the denseness assumption. Despite extensive work

over the past ten years the rate of convergence of natural random walks on

the set of permutations consistent with a general restriction matrix remains

open.

Among interesting recent developments we mention: Kendall, Randall

and Sinclair (1996) show that the random walk algorithm works in poly-

nomial time for the perfect matchings in bipartite graphs which are vertex

transitive (e.g. d-dimensional rectangular grids with toroidal boundaries).

Jerrum and Vazirani (1992) give an algorithm that approximates the perma-

nent of any n x n zero-one matrix in time e

cnΊ(ι°9n) . This is superpolyno-

mial but better than the n2n of Ryser's algorithm. Rasmussen (1994) gives a

simple greedy approximation algorithm for the permanent which is shown to

run in polynomial time for almost every graph for the usual G(n,p) model

of random graphs. Finally, Karmarkar et al.(1993) followed by Barvinok
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(1998) and Rasmussen (1998) show how to approximate the permanent by
a stochastic algorithm which replaces the ones by cube roots of unity and
takes the squared modulus of the determinant. This algorithm has good
average case behavior but exponential worst case behavior.

In Section 3 below we describe walks with interval restrictions where
some things can be proved.

2.4 The Example of Fibonacci Permutations

This Section treats a simple example which shows that elegant theory can
be developed for enumeration, random generation and the study of cycle
structure. Let An be the n x n matrix with ones on, just above and just
below the diagonal. Thus when n = 4

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

From the definition (2.1), Per (A) is multilinear. Expanding by the first row,
we derive a result first noted by Lehmer (1970):

PerAn — PerAn-ι + PerAn-2-

From direct computation, Per(A\) = 1, Per(A2) = 2, so Per(An) = F n + i
is the (n + l)st Fibonacci number. The Fibonacci numbers are defined as

ΓQ — U, r i = 1, Γ2 = 1, Γ3 = ^ , Γ4 = o, Γ5 = O,. . . , ^n+1 = ^n "T ^n-1?

We will call the elements of SAU Fibonacci permutations.
We first develop several bijections with combinatorial objects well known

to be counted by Fibonacci numbers. Permutations counted by Per(An)
can be described in their cycle form. They are all permutations consisting of
fixed points and pairwise adjacent transpositions. To see this, observe that
permutations can be constructed as follows.

Place symbols 1,2,3,..., n in a line, put a left parenthesis at the start
and a right parenthesis at the end. Proceeding sequentially, decide to pass on
or to place parentheses ) ( between i and i + 1. This results in the following
five permutations consistent with A\\

From this description it is easy to see that the permutations enumerated by

An are in one to one correspondence with the following well-known Fibonacci

equivalents.
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Proposition 2.1 The set of Fibonacci permutations on n letters is in one-
to-one correspondence with:

• Subsets of [n — 1] with no consecutive elements: φ, {1}, {2}, {3}, {1,3}

• binary (n-l)-tuples without two consecutive ones: 000; 100; 010; 001; 101

• Matchings in an n-path:

o o o o J o—o o o ! o o—o o ' o o o—e ' o——o o—o

• Compositions ofn with all parts equal to one or two 1111,211,121,112,
22

The next proposition gives an easy, direct method for uniformly choosing
a random Fibonacci permutation. It is based on a theorem of Zeckendorf
(1972) and the Fibonacci numbering system.

Proposition 2.2 Any positive integer n can be uniquely expressed as n =

Fki + Fk2 H + Fkt with F^ distinct Fibonacci numbers starting with F2,
no two adjacent.

Thus 1 = F 2 ,2 = F 3 ,3 - F 4 ,4 = F 2 + F 4 ,5 = F 5 ,6 = JF5 + F 2 , 7 -
F 5 + F 3 ,8 = F 6 ,9 = F 6 + F 2 ,10 6 - F 3 0 + F26 + F 2 4 + F12 + F 1 0 , these topics
are covered in Graham, Knuth, Patashnik(1989, pp.281-283). They show
that the representation is easy to find, each time substracting off the largest
possible Fibonacci number.

For our purposes, consider a path with n vertices and edges labeled with
consecutive Fibonacci numbers starting with F2;eg for n=8:

F2 F3 F4 F5 FQ FJ F%

1 2 3 5 8 13 21

The weight of a matching in this graph is the sum of the weights of the
edges. The largest possible sum comes from choosing the unique maximal
matching. It is easy to prove that this has weight F n +i — 1. Thus in the
example above, 21 + 8 + 3 + 1 = 33 = Fg — 1. With this preparation, the
algorithm is simple.

Proposition 2.3 The following algorithm produces a randomly chosen Fi-

bonacci permutation on n letters.

Choose an integer U, uniformly between zero and F n +i — 1. Express U

in the Fibonacci numbering system and use the edges as a matching. Using

the correspondence between matchings and Fibonacci permutations completes

the construction.
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For a randomly chosen permutation π 6 Sn the number of fixed points
F(π) has an approximate Poisson(l) distribution, the number of transposi-
tions T(π) has an approximate Poisson(^) distribution, the number of cycles
C(π) has an approximate Normal distribution with mean logn and variance
log n, and finally the number of inversions has an approximate Normal dis-
tribution with mean \ and variance |g.

The following proposition shows how these results carry over to Fibonacci

permutations. In this case, the four results coalesce since T(π) = /(π),

C(π) = T(τr) + 7(τr) and n = F(π) + 2T(τr).

Proposition 2.4 Let π be α randomly chosen Fibonacci permutation on n

letters. Let T(π) be the number of transpositions in π. Then

/n-k\
(2.5) DίΦ __ M __ V *• ' ~ - . . tn

(2.6)

with φ =

(2.7)

(2.8)

Proof A bijection between Fibonacci permutations with T(π) = k and fe
sets of an n — k set is easy to see; Put n — k dots down in a row. Circle each
element in a subset of size fc. Now working from left to right, all encircled
points are expanded to two points and correspond to transpositions. Thus

® ® < > (12)(34)5

The generating function for (n^fc) is a classical result:

'*
m - Σ(n;k)

(2.9)

Setting z = 1 gives the classical expression

(2.10)
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, l + \/5 Λ 1-Vb
where φ = — - — , ψ =2 ' " 2

Differentiating (2.9) at z = 1 gives

2
Φn) - 5\/5

25

Dividing by Fn+i and using (2.10), routine simplifications give (2.6,2.7) .
An interesting proof of the liming normality uses the identification of

Fibonacci permutations with the set of all matchings in an n-path. In this
identification, the number of transpositions corresponds to the number of
edges in the associated matching. Godsil(1981) has shown that the num-
ber of edges in a random matching of a general graph tends to a Normal
distribution provided only that the variance tends to infinity. •

Remark 2.1 The limiting normality can be proved directly from (2.5) using
Stirling's formula to give a local central limit theorem. Alternatively, the
generating function (2.9) can be used. Godsil's proof used above itself uses
Harper's method and depends on the fact that the zeros of the matching
polynomial are all real. Pitman(1997) develops Harper's method and gives
easily computed error bounds to the central limit theorem.

Remark 2.2 Similar results can be developed for the case where the re-
striction matrix has ones on the diagonal and k to the left and right of the
diagonal in each row. The Fibonacci example has k = 1.

2.5 Other applications of permanents

The above surveys only mention features of the permanent literature directly
related to the present project. There are many further applications. Mallows
(1957) shows how permanents appear in computing normalizing constants
in non-null ranking models. Bapat (1990) surveys a variety of appearances
of permanents in statistics and further applications appear in Sections 3
and 4 below. Daley and Vere-Jones (1988) show how permanents occur for
point-process theory and computing moments of complex normal variables.

One of the most active recent developments is the immanants. These are
expansions of the form:
(2.11)
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with Ξ a character of the symmetric group. Taking Ξ = 1 gives the per-
manent, taking Ξ(τr) = sgn(π) gives the determinant. There is active work
giving inequalities for other immanants (see Lieb (1966) and Stembridge
(1991, 1992) for surveys).

3 Testing for Independence

3.1 Introduction

Consider the classical problem of testing for independence without trun-
cation. One observes pairs (AΊ, YΊ), (X2? ^2), > {X n, Yn) drawn indepen-
dently from a joint distribution V with Xi e X,Yi £ y, suppose that V
has margins V1 and V2. A test of the null hypothesis of independence:
V — φλ x φ2 may be based on the empirical measure Vn. Let δ be a metric
for probabilities on X x y. One class of test statistics is

(3.12) Tn = δ{Vn,V
ι

nxV2

n)

Extending classical work of Hoeffding (1948), Blum, Kiefer and Rosenblatt
(1961), and Bickel (1969), Romano (1989) show that under very mild regu-
larity assumptions, the permutation distribution of the test statistic Tn gives
an asymptotically consistent locally most powerful test of independence.

Consider next the truncated case explained in Section 1. The hypothesis
(1.2) may be called quasi-independence in direct analogy with the similar
problem of testing independence in a contingency table with structural zeros.
Clogg (1986) and Stigler (1992) review the literature and history of tests for
quasi-independence with references to the work of Caussinus and Goodman.

While optimality results are not presently available in the truncated case,
it is natural to consider the permutation distribution of statistics such as
(3.12). This leads to a host of open problems in the world of permutations
with restricted position.

We were led to present considerations by a series of papers in astrophysics
literature dealing with the expanding universe. The red shift data that is
collected for these problems suffers from heavy truncation problems.

For example, Figure 1 from Efron, Petrosian (1998) shows a scatterplot of
210 x — y pairs subject to interval truncation, the x coordinate corresponds
to red-shift, the y coordinate corresponds to log-luminosity. A suggested
theory of 'luminosity evolution' says that early quasars were brighter. This
suggests that points on the right side of the picture are higher because the
high redshift corresponds to high age.

Astronomers beginning with Lynden-Bell (1971, 1992) have developed
permutation type tests based on Kendall's tau for dealing with these prob-
lems. There is a growing statistical literature on regression in the presence
of truncation; see Tsui et al.(1988) for a survey.
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210 observed data points and their boundaries
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0 0.5 1 1.5 2 2.5 3 3.5

Figure 1. Quasar Data, 210 points, upper and lower limits.

Most previous work deals with one-sided truncation of real-valued obser-
vations. The theory and practice is easier here as explained in Section 3.2 .
Efron and Petrosian (1998) have recently developed tests and estimates for
the case of two-sided truncation. We develop some theory for their setup in
Section 3.3. The following preliminary lemma shows that interval truncation
of real valued observations leads to restriction matrices with intervals of ones
in each row.

Lemma 3.1 Let a?i,... ,x n take values in an arbitrary set. Let I(xt ) be a
real interval. Let yi,2/2, ,2/n be real numbers with yι G I(xχ). Suppose
the ordering is chosen so that y\ < y<ι < 2/3 < < yn Finally, define a
zero-one matrix A of dimension n by

^ ~ \ 0 e
f Vj € I(xi)

else

Then each row in A has its ones in consecutive positions with a one in

position (i,z), 1 < i < n.

Proof The intervals may be pictured as in Figure 2, which is translated
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Figure 2. Seven permitted intervals and interior points
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to the matrix whose transpose is

(3.13)
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0
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1

1

Consider row i of A. By definition, An = 1. Suppose that Aij = 1, for
some i < j . Thus yj G I(xi) and of course y\ G I(xi). By monotonicity,
yi G I(xi) for i < ί < j . A similar argument for j <i completes the proof. •

3.2 One-sided restriction

Paired data with {y^Xi) observable, if and only if, yi G (αi,oo) give rise
to one sided restriction matrices (yι G (—oo, αi) is similarly treated). This
Section shows that a neat theory emerges for one-sided truncation. Sets
of permutations consistent with one-sided truncation can be described as
follows. Let & = (δi, &2? i &n) with 1 < b{ < n be positive integers. Let

(3.14) Sb = {π : τr(t) > h, 1 < i < n}
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Equivalently, the matrix A has Aij = 1 iff j > bi. Without loss of generality,
we take b\ < 62 < * h < < bn in the sequel.

Some examples:

• If all bi = 1, Sb contains all permutations.

• If bi = 1,1 < i < α, b{ = 2, α + 1 < i < n, Sb contains all permutations
with 1 in the first α places.

• If bi = ΐ, 5b contains only the identity permutation.

• If bi = b2 = I, bi = i — 1,1 <i <n Sb contains 2n~1 permutations.

The restriction matrices arising from sets Sb give rise to what are called
Ferrers boards in the rook polynomial literature. The following lemma, due
essentially to Karl Pearson in 1913 shows it is easy to choose from the uniform
distribution on S&.

Lemma 3.2 Let b\ < b<ι < < bi < < bn be positive integers with
bi < i,l < i < n. The following algorithm results in a uniform choice from
Sb Begin with a list containing 1,2,..., n.

• Choose τr(n) uniformly from J = {j : j > bn}. Delete π(n) from the
list of choices.

• Choose π(n—1) from the elements j in the current list J with j > bn-\.
Delete π(n — 1) from the list

• : and so on...

Proof The algorithm produces an element of Sb without getting stuck

because of the restriction bi <i. Conversely, any π in Sb is possible through

a unique set of choices. •

The following is a classical corollary from the combinatorics literature.

It shows there is a clean formula for |5&| and gives a representation of the

permutation distribution of Kendall's tau as a sum of independent uniform

variates.

Corollary 3.1 Let J(τr) be the number of inversions in π and C(π) be the

number of cycles in π. Then

(2) Σxesb

(3) Σ es
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Corollary 3.2 Suppose that X{ is uniform on {0,1,... ,i — b{}. Let Y{ be
independent binary variables with P{Yi = 0} = ι-j1, P{Y% = 1} = -f. Let π
be chosen uniformly from Sn. Then

(1)

(2) P(C(π)=j)=P(Y1+Y2 + .Yn=j)

Remark 3.1 The statistics J(π) and n — C(π) are standard distances on
the permutation group used as measures of disarray (see Diaconis and Gra-
ham(1977) or Diaconis(1988, chapter 8)). Indeed, I(τr) is the minimum
number of pairwise adjacent transpositions required to bring π to the iden-
tity and n — C(π) is the minimum number of transpositions required to bring
π to the identity. Further, J(π) is affinely related to Kendall's tau, a non
parametric measure of association. The corollary represents these statistics
as sums of simple independent random variables. This allows easy calcula-
tion of means and variances and a proof of the central limit theorem with
Edgeworth corrections. For further details see Feller (1968).

Remark 3.2 One natural notion of rank test involves statistics of form
Σ?=im(*>πW)? with π uniformly chosen in S&. Efron and Petrosian (1992)
have introduced an apparently different notion of rank test with a simple
distribution theory based on lemma 3.2. The relation between these rank
tests and the distribution theory above are open problems.

While Corollary 3.1 is well known in the combinatorial literature, it is

often rediscovered by statisticians, see Tsai (1990).

3.3 An example with historical insights

Karl Pearson considered a natural source of censored observations in his work
on what is now called quasi independence. He considered families with one
or more imbecilic children, cross tabulating the family size versus the birth
order of the first such child. Clearly a family of j children can only have its
first born special child in a position between one and j and consequently,
T{j = 0 for i > j. Pearson carried out a test of independence with this
truncated dataset in 1913! A historical report on Pearson's work and its
later impact is given by Stigler (1992).

It is worth beginning with an exact quote of Pearson's procedure from
the article by Elderton et al. (1913).

"Lastly we considered the correlation between the imbecile's place in
the family and the gross size of that family. Clearly the size of the family
must always be as great or greater than the imbecile's place in it, and the
correlation table is accordingly one cut off at the diagonal, and there would
certainly be correlation, if we proceeded to find it by the usual product
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moment method, but such correlation is, or clearly may be, wholly spurious.
Such tables often occur and are of considerable interest for a number of
reasons. They have been treated in the Laboratory recently by the following
method: one variate x is greater than or equal to the other y; let us construct
a table with the same marginal tables, such that y is always equal to or less
than x, but let its value be distributed according to an "urn-drawing" law,
i.e. purely at random. This can be done. We now have two tables, one the
actual table, the other one with the same marginal frequencies, would arrive
if x and y were distributed by pure chance but subject to the condition that
y is equal or less than x, this table we call the independent probability table.
Now assume it to be the theoretical table, which is to be sampled to obtain
the observed table, and to measure by χ 2 and P the probability that the
observed result should arise as a sample from the independent probability
table."

We find this paragraph remarkable as an early clear example of the con-
ditional permutation interpretation of the chi-square test. A careful reading
reveals that Pearson is not explicit about the "urn drawing" commenting
only that this can be done. In the rest of this Section we give an explicit
algorithm by translating the problem into that of generating a random per-
mutation with restrictions of the one-sided type and showing that lemma
3.2 achieves a particularly simple form.

To begin with, it may be useful to give the classical justification for
Fisher's exact test of independence in an uncensored table. Let T{j be a
table with row sums T{ and column sums Cj . Under independence the
conditional distribution of Tij given r̂ , Cj is the multiple hypergeometric.
This may be obtained and motivated as a permutation test as follows. Sup-
pose the n individuals counted by the table have row and column indicators
(Xi,Yi)ι<i<n with 1 < Xi < /, 1 < Yi < J. The usual permutation test
chooses π G Sn at random forming a new data set (Xi,Yπφ). The I x J
table formed by this dataset has the multiple hypergeometric distribution.
Said another way, here is a simple algorithm for generating a random table
drawn from the multiple hypergeometric distribution :

• Place TV balls in an urn with T{ of color i.

• Draw c\ balls without replacement and set Tn to be the number of
balls of color i among these, 1 < i < I.

• Draw C2 balls from the remainder without replacement and set 2*2 to
be the number of balls color i among these...
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We can now mimic these computations for the triangular table considered
by Pearson. Call the table entries Πij with Πij = 0 for j > i. Suppose n =
Σt>j n%j τ h e original data can be regarded as (X^ Yk)ι<k<n with Yk < Xk
This falls into the truncated data pattern with I(xi) = [l,Xi]. Following the
prescription of Lemma 3.1, choose the labels i so that Y\ < Y<ι < < Yn

and let A*j = < j ι . The algorithm of Lemma 3.2 translates

to the following algorithm to generate the triangular table will row sums
r i , . . . 77, column sums ci,... cj, and Tij =0 if j > i.

• Place c\ balls labeled 1 in an urn and sample τ\ of these without
replacement. Let T\\ be the number of balls in the sample labeled 1.

• Add C2 balls labeled 2 to the urn. Sample r<ι from the urn without
replacement. Let T21 be the number of balls labeled i in the sample
ί = 1,2.

Remark 3.3 It is clear from Pearson's discussion following the quote above
that he was aware of essentially this algorithm. He used it to give a closed
form expression for the maximum likelihood estimates.

Very similar upper triangular tables arise in genetics in testing good-
ness of fit of the Hardy-Weinberg equilibrium model. The analogous exact
sampling scheme is well-known. Recently, Markov chain Monte Carlo tech-
niques have been used to to do the sampling; Guo and Thompson (1992)
derive such an algorithm which is a further studied in Diaconis, Graham
and Holmes(1999). Lazzeroni and Lange(1997) give a stopping time ap-
proach which is an early example of exact sampling. All of these ideas can
be extended to the one-sided censoring case.

3.4 Two-sided restrictions

All of the neat factorizations and sampling schemes in Section 3.3 disappear
in the case of two-sided truncation. In this Section we introduce a graph
structure on permutations in SA This gives a reversible Markov chain on
SA which can be run to calibrate permutation tests. Further, the graph
structure gives an exchangeable pair so that Stein's method may be used to
approximate the distribution of rank statistics as in Stein (1986), Bolthausen
(1984), and Bai, Chao, Liang and Zhao(1997).

Lemma 3.3 Let A be the zero-one matrix of dimension n. Suppose that for
all i, An = 1 and that the ones in each row of A lie in an interval Define
a graph G with vertex set SA and edges between σ and r for σ and r that
differ by a transposition of labels. This graph G is connected.
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Proof By construction, Id € SA Connectedness is proved by showing
that any σ € 5^ is connected to Id. This in turn is proved by regarding
σ as a product of disjoint cycles and showing that any cycle can be broken
into two resulting in another permutation still in SA Towards this end, it is
useful to picture the permutations superimposed on the matrix A coloring
the places in A corresponding to the permutation representation of σ. For

. / 1 2 3 4 5 \
example σ — I I appears as

/ 1

(3.15)

0 0

\ o 1 /

The rows correspond to positions, the columns to labels. An allowable tran-
sition can be pictured on A as well. For example, transposing labels 2 and

5 gives I I G SA The transition is pictured via the paren-
y 2 1 4 o 5 J

1

Γ]
0

0

0

E
1

1

1

i1)

1

1

1

Ξ
1

1

0

B
1

1

(1)

0

0

1

E

y 2 1 4 o 5
theses in display (3.16):

(3.16)

In general, transposing two labels is admissible if and only if there are two
ones in the two available places in A. In the example, σ is a product of two
cycles (1,5,2) and (3,4). It will be useful to picture moving along the cycle
on the picture of σ on A. Prom a boxed square at (i, j) move to diagonal
(j,j) and then to the unique box in row j . Finally, observe that given a
cycle (ή,i2, . ,H) w i t h h smallest, the submatrix A of A formed by rows
{ϊi, %2, . , k} and columns {ή, Z2,.. , π} has the row interval property with
ones on the diagonal. For example, the cycle (l,5,2)above the gives A as

/ 1 1 1 \

(3.17) 1

0

0

1

Beginning the cycle with its smallest elements results in A having the left-
most boxed element in the first column.
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We may thus study the submatrix corresponding to the cycle (ii,i2j >
it) in a matrix A with ones on the diagonal and having the ones in each row
in an interval use {ή,22? 5^} to label the rows and columns. Thus the
matrix appears as

(3.18)

1

1
1

1
1
1
1

ϊ]
1

1

1

1
1
1

1

1

1

1

1

1

1

1
1

1

1

. . .

. . .

1
1

1
1
1

1

1

1
1
1
1
X

1

-I

1
X

1
1
1
1
X

1
1

The proof proceeds in two cases:

Case 1 i£ > i2 Then, by the row interval property there is a 1 in positions
(ii,ii) and (^,22)- Thus labels 12 and it can be transposed.

Case 2 it <i2 Following around the cycle starting with the box in the first
row leads to the diagonal (̂ 2,̂ 2)- Suppose the box at position (22? 3̂)
in row 12 is to the left of (̂ 2, i<ι) then by the row interval property labels
i% and i$ can be transposed. Finally, consider the case where the box
in row %2 is to the right of (22,̂ 2) the position is thus pictured:

(3.19)

1

(*2,*2)

1 1
... 1
1 1

1 1

1

1
1 1 1

The reader may picture the horizontal £JJ and the vertical line ly
through (Ϊ2,Ϊ2) The path along the cycle next goes down to (13,12)
and continues. Eventually, the cycle path must hit the box in position
(it,ii). To do this, it must cross the vertical line £y. Consider the
first time this happens, the path must cross the line from right to left
winding up in a box at position (iΓ,ic) with ir >'i2,ic < h By the
row interval property there are ones between (ir,ic) and (ir,ir) Thus
AIM = 1. Further, in the first row A^ = 1. It follows that labels %i
and ic can be transposed.
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This covers all cases and completes the proof. •

Remark 3.4 The graph of Lemma 3.3 can be used to run a Markov chain
on SA Prom σ G SA choose one of (£) transpositions uniformly at random
and transform σ by switching the two chosen labels. If this new permutation
is in SA, the walk moves there. If not, the walk stays at σ. This results in
a symmetric connected Markov chain which has uniform stationary distri-
bution on SA- The chain is aperiodic whenever A is not the matrix entirely
filled with ones.

This chain allows calibration of any test statistic. Its proper use needs an
estimate of the relaxation time. We have carried out some preliminary work
which suggests that order π2logn steps are sufficient in the case of interval
structure for A, this remains a conjecture. We remark that Hanlon(1996) has
determined all the eigenvalues of this Markov chain for the case of one-sided
truncation.

Remark 3.5 For more general zero patterns, the graph based on transposi-
tions need not be connected. For example, consider the derangements in 53.

/0 1 1\
The matrix is 1 0 1 . The two derangements are (1,3,2) and (1,2,3)

\l 1 0/
in cycle notation. These are even permutations and cannot be connected by
transpositions.

The 3 x 3 matrix for derangements (call it D) can be used to construct
larger examples which show the difficulty of making a general theory. For
example, construct a 3n x 3n matrix A by placing copies of D down the diag-
onal, zeros in the remaining upper triangular part and ones in the remaining
lower triangular part. It is easy to see that there are 2n permutations in SA
and that none of these can be connected to any others by transpositions.
As a second example, construct an n x n matrix A with a single copy of D in
the upper left hand corner. Place zeros in the remaining places of the first
three rows and ones everywhere else. Here, there are two giant components
in SA which cannot be connected by transpositions.

We have shown that for n > 4 the set of all derangements is connected by
transpositions. The argument proceeds by showing that any derangement
can be brought to the n-cycle (1,2,3,4,..., n) in at most n—1 transpositions.

While not exploited in the current paper, there is a large class of examples
of sets of permutations which are connected by transpositions; these are the
linear extensions of a given partial order. See Brightwell and Winkler (1991)
for an overview and references.

Remark 3.6 The Markov chain of Remark 1 above gives an exchangeable
pair of random permutations (X, X')> w ^ ^ X chosen from the uniform distri-
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but ion on SA and X1 one step of the chain away from X. Such an exchange-
able pair forms the basis of Stein's approach to the study of Hoeίfding's
combinatorial limit theorem. Bolthausen (1984) and Schneller (1989) used
extensions of Stein's method to get the right Berry-Esseen bound and Edge-
worth corrections. Zhao, Bai, Chao and Liang (1997) give limit theorems
for double indexed statistics (a la Daniels) of form Σα(iiJiπ(i)>πU)) using
Stein's method. Finally, Mann(1995) and Reinert(1998) have used Stein's
method of exchangeable pairs to show that the chi-square test for indepen-
dence in contingency tables has an approximate χ 2 distribution, conditional
on the margins.

We have used the exchangeable pair described above to prove normal
and Poisson limit theorems for the number of fixed points in a permutation
chosen randomly from the set SA- There is a lot more work to be done. We
note in particular that the limiting distribution of linear rank statistics is an
open problem with even one-sided truncation. The distribution of Kendall's
tau is an open problem in the case of two-sided truncation.

We close this Section with a statistical comment and a useful lemma. The
widely used non parametric measure of association Kendall's tau applied to
paired data {{xi,Vi)} can be described combinatorially as follows: Sort the
pairs by increasing values of X{. Then calculate the minimum number of
pairwise adjacent transpositions required to bring {yι\ into the same order
as {xi}. When working with restricted positions, it is natural to ask if any
admissible permutation can be brought to any other by pairwise adjacent
transpositions.

The following example shows that this is not so. For n = 3 consider the

/ 1 1 1\ / 1 2 3\
matrix I 0 1 0 I. There are two admissible permutations ( I

Vi i i/ V ;

/ 1 2 3 \
and I I. No pairwise adjacent transpositions of the labels is al-

\ 3 2 I J
lowable. The matrix has the row interval property and all transpositions
connect.

It is not hard to see that pairwise adjacent transpositions connect all
admissible permutations in the one-sided case.The following lemma proves
connectedness in the monotone case: The intervals I(xi) = (αi,&i) can be
arranged so that α\ < α<ι < as < < an;bι < 62 < 63 < * * < K- For
the monotone case, order i by a{ increasing. Then, it is easy to see that the
restriction matrix Aij = < . j ^ *' has both row interval property
and column interval property, and An = 1. Call such a restriction matrix
monotone.
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Lemma 3.4 Let A be α n-dimensionαl monotone restriction matrix. Form
a graph with vertex set SA and an edge between two permutations if and only
if they differ by a pairwise adjacent transposition of labels. This graph is
connected.

Proof By construction, SA contains the identity. The argument proceeds

by showing that any permutation π G SA can be brought to the identity by

pairwise adjacent transpositions. It is useful to picture π on A by boxing

entry (i,j) if π(i) = j.

(3.20)

1

1

0

o \
DD
1

1 1

/ 1 2 3 4
represents I 3 4 j 2

A pairwise adjacent transposition corresponds to a basic move in two

adjacent rows

Recall that π has an inversion at (i,j) if i < j and π(z) > π(j). Only

the identity has no inversions. Consider two consecutive rows z,z + 1 , if

π(i) > π(i + 1) the picture appears as

Consider the first row for which π(i) > ΐ, if π Φ identity, such a row must

exist. By the row and column interval property a basic move can be made.

This reduces the number of inversions by one. Continue until no pair of

adjacent rows has an inversion. This gives the identity. •

Remark 3.7 While lemma 3.3 shows the graph is connected we have found

simple examples of monotone restriction matrices where the distance be-

tween pairs and agreeing permutations is not given by Kendall's tau. For

example, let A be a 4 x 4 matrix with ones everywhere except in the upper

right and lower left corners. The two permutations ( 9 1 4 0 )

2 3 4 \
. I have Kendall's distance 5, but their graph distance is 6.
1 J. 4c Δ J

and
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Remark 3.8 In the case of discrete data(contingency tables) arbitrary pat-
terns of truncation can be handled using the moves in Diaconis and Sturmfels
(1998). For this case, the moves are easy to specify. Suppose the x-variable
takes on / levels and the y variable takes on J levels. Form the complete
bi-partite graph on the set {1,2,..., 1} x {1,2,..., J} . If cell (i, j) is unob-
servable, delete this edge. The circuits in the remaining graph form a con-
necting set of moves successively adding and deleting one while traversing
the circuit. This suggests two lines of generalization. First, continuous data
can be treated by discretization. Second, truncated multivariate data can
be approached using the multiway table moves from Diaconis and Sturmfels
(1998).

4 An application to ESP guessing experiments

This final Section gives a different set of applications for permutations with
restricted positions.

A classical test of parapsychology involves a deck of 25 cards made up
of the following five symbols of

# + « • o
Each repeated five times. Under ideal conditions the deck is well shuffled
and a guessing subject attempts to guess at the cards in order. Under the
natural chance model, each guess has chance | of being correct and so the
expected number of correct guesses is five. Of course the distribution of the
number of correct guesses depends on the guessing sequence. If the subject
always guesses the same symbol, there is no variability. It is not hard to show
that the variance of the number of correct guesses is largest if the subject
guesses some permutation of the values. In Diaconis and Graham(1981), we
studied variations where feedback was given to the subject after each guess.
For example, suppose the subset is shown the card at position i after guess
i (complete feedback). Then the optimal strategy is to guess a card with
highest frequency among those remaining. Read (1962) shows in this case
the expected number of guesses is 8.65. This is of some practical interest
since many early experiments were done with feedback and 8.5+ is reported
as the highest of average trials in actual trials.

The most interesting type of feedback is yes/no feedback: if a subject
guesses correctly, they are told so. If they are incorrect they are only given
that information. Now, the subjects optimal strategy is not obvious. We
have shown in Diaconis and Graham (1981), that the greedy strategy (guess
the most likely value), is only close to optimal. We also determined that the
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expected number of correct guesses under the optimal strategy is 6.63.

The reason for discussing these matters here is twofold. First; the
evaluation of the probabilities involved uses permanents. Second; a nat-
ural monotonicity conjecture proved by a longish combinatorial argument
in Chung, Diaconis, Graham and Mallows (1981) follows from one tool
developed to prove the van der Waerden conjecture. To define things,
let iV(αi, α2,..., α r ; 6χ, b2, , K) be the number of arrangements of a deck
of α\ + α2 + αr = n cards with αι of type i, such that symbol one
does not appear in the first b\ places, symbol 2 does not appear in places
b\ + 1, b\ + 2 , . . . , &i + &2> and so on.

This quantity allows evaluation of the probabilities of events like: The
next card is type i given bj "no" responses on type j . From the definition,
iV(a, b) = Per(M) where M is the n x n zero/one matrix of the form:

M =

[mi]
1
1

1

1

1

1

1

[m2]
1

1

1

1

1

1

1

[m3]

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

N
with mi an αι x bi block of zeros and the rest all ones. The inequality to be

proved is:

Proposition 4.1 For any a, b with JV(a, b) φ 0, and any i, 1 < i < r

N{a,b)

with e{ = (0,0, . . . , 1,0,..., 0) the usual ith basis vector.

Remark 4.1 In the card guessing context, the inequality has the following

interpretation: in a yes-no feedback experiment; the chance that the guess

at the next card is of type i cannot decrease if the next card is of type i and

is incorrect.

Proof The argument uses a quadratic form defined on R n . Given positive

vectors Vi, V2,..., VU-Ί in RΛ define

< x\y >= Per[Vu V2,..., Vn-2, ^ v]

This is a symmetric bilinear form on R n . It is used in a crucial way in

Egorychev's proof of the permanent conjecture. We follow the account in
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van Lint and Wilson (1992). They show (Theorem 12.6) that this form is
Lorentzian having n — 1 negative eigenvalues and one positive eigenvalue.
Such forms are easily seen to satisfy a "reverse Cauchy-Schwarz inequality"
for x positive and y arbitrary.

(4.21) <x\y >2 > <x\x ><y\y>

By continuity, (4.21) also holds if some of the entries in V* or x are allowed to
be zero. Proposition 4.1 follows from (4.21). By symmetry of the permanent,
it is enough to prove it for er. Consider the three matrices corresponding
to αr x 6r, αr x br + er, αr x br + 2eΓ. Move these rth blocks to the right of
the full matrix. The last two columns of the full matrices with these blocks
appear as

αr

' 1

1

1

0

0

1 "

1

1

1

*

1

' 1

1

1

0

0

1 "

1

1

0

:

0

" 1

1

1

1

1

1

1 '

1

1

1

1

1

All other columns axe the same,
matrix x and y and apply (4.21). •

Call the two columns from the first

Remark 4.2 In Chung, Diaconis, Graham and Mallows (1981) it was in fact
shown that Πk = AΓ(α, b + kei) is log-concave: n\ > n/-+infc_i. Their proof
was combinatorial and only worked for zero-one matrices. It is not clear if
there is an analog of log-concavity for more general Lorentzian forms.
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