WIENER MEASURE

1. WIENER MEASURE IS THE WIENER PROCESS

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition 1.1. The Wiener process starting at 0 is the \mathbb{R}^d valued stochastic process $W = (W(t))_{t \in [0,T]}$, $0 < T < \infty$ such that

- (1) W(0) = 0 a.s.;
- (2) (ii) the family of distributions is specified by

$$F_{t_1,\ldots,t_k}(A) = \int_A p(0,x,t_1,x_1)p(t_1,x_1,t_2,x_2)\ldots p(t_{n1},x_{n-1},t_n,x_n)dx_1\ldots dx_n$$

for every Borel set A in $\mathbb{R}^d \times \mathbb{R}^d$ (n times).

Here

$$p(s, x, t, y) = \frac{1}{(2\pi(t-s))^{d/2}} e^{-\frac{|x-y|^2}{2(t-s)}}$$

Another characterization is

- (1) W(0) = 0 a.s.;
- (2) W(t) W(s) is $\mathcal{N}(0, |t s|)$;
- (3) $W(t_1), W(t_2) W(t_1), \dots, W(t_n) W(t_{n-1})$ are independent for all $0 \le t_1 < t_2 \dots < t_n$;
- (4) $t \mapsto W(t)$ is continuous a.e. $\omega \in \Omega$.

Broadly speaking, a stochastic process can be looked many ways. For example, has a:

- (1) probability measure (set of functions, convenient σ algebra, probability);
- (2) family of random variables $X(t): \Omega \to \mathbb{R}^d, t \in [0, T];$
- (3) random element $X: \Omega \to \texttt{set}$ of functions;
- (4) family of distributions $\mu_{t_1,...,t_n}$ in $(\mathbb{R}^d)^n$.

The Kolmogorov Extension Theorem makes the last description above equivalent to the other descriptions and it gives meaning to the starting definition: there exists such a process, because it does lead to a unique probability measure on a convenient probability space.

1.1. Existence. We will need the following consistency notion. Let

$$\{t_1, \dots, t_m\} \subset \{s_1, \dots, s_n\} \subset [0, T], \quad m < n$$

and

$$s_1^{(0)} < \ldots < s_{n_0}^{(0)} < \mathbf{t}_1 < s_1^{(1)} < \ldots < s_{n_1}^{(1)} < \mathbf{t}_2 < \ldots < \mathbf{t}_m < s_1^{(m)} < \ldots < s_{n_m}^{(m)}.$$

Note: the previous, just means we can fit, n_0 "s" before t_1 , n_1 "s" between t_1 and t_2 and so forth; we used negrito to emphasize the positions.

We say a family of distributions μ_{t_1,\ldots,t_m} is consistent if

 $\mu_{t_1,\ldots,t_n}(E_1\times\ldots\times E_m)=\mu_{s_1,\ldots,s_n}(\mathbb{R}^d\times\cdots\times\mathbb{R}^d\times\mathbf{E}_1\times\mathbb{R}^d\times\ldots\mathbb{R}^d\times\mathbf{E}_m\times\mathbb{R}^d\times\ldots\times\mathbb{R}^d),$

for all Borel sets E_1, E_2, \ldots of \mathbb{R}^4 . Note: again the negrito is just for visualization.

(1) Kolmogorov extension theorem: let $\mu_{t_1,...t_k}$, be a family of probability measures satisfying the consistency condition. Then there exists a measurable space $(\Omega_K, \mathcal{B}_K)$, a unique probability measure P and a stochastic process X such that the

$$P(\omega: (X(t_1, \omega), \dots, X(t_n, \omega)) \in A) = \mu_{t_1, \dots, t_n}(A), \text{ for } A \in (\mathbb{R}^d)^n.$$

(2) Kolmogorov continuity criteria. Let $(X(t))_{[0,T]}$ be a stochastic process and assume there exists $p, \beta, C > 0$

$$\mathbb{E}|X(t) - X(s)|^{p} \le C|t - x|^{1+\beta}, \ x, y \in [0, T].$$

Then X has γ Holder continuous modification for all $0 < \gamma < \beta/p$.

As for continuity, since $W(t) - W(s) = \sqrt{|t-s|}\xi$ and ξ is $\mathcal{N}(0,1)$, we have

$$\mathbb{E}|W(t) - W(s)|^{p} = E|\xi|^{p}|t - s|^{p/2}.$$

Hence there exist a modification in the Hoelder spaces of order $\gamma < 1/2 - 1/p$, for all p. Letting $p \to \infty$, there exists a continuous modification in the Holder spaces of order $\gamma < 1/2$.

To finalize, look at the family $F_{t_1,...,t_k}$. It can be shown that it is a consistent family. Kolmogorov extension enters and the construction of the theorem yields:

- (1) $\Omega_K = (\mathbb{R}^d)^{[0,T]};$
- (2) \mathcal{B}_K the smallest σ algebra making measurable the evaluation maps $\overline{t} : \omega \mapsto \omega(t)$ (the point of this is so that the process built W(t) is measurable for all t);
- (3) the random variable is W(t) is the th projection or evaluation map $\omega \mapsto \overline{t}(\omega) = \omega(t);$
- (4) $\mathbb{P} = \mathbb{P}_W$ is such that $\mathbb{P}_W(\omega : W(t_1, \omega), \dots, W(t_n, \omega)) \in A) = F_{t_1, \dots, t_k}(A)$, A Borel of $(\mathbb{R}^d)^n$.

In some sense the original probability space is not relevant anymore. We can just assume the Wiener process is the constructed (canonical) process $\Omega_K \times [0,T] \to \mathbb{R}^d$, $(t,\omega) \mapsto \bar{t}(\omega) = \omega(t)$ and that the probability space is $(\Omega_K, \mathcal{B}_K, \mathbb{P}_W)$. Normally we drop the the subscripts as well.

On the other hand, one can argue that the original space does matter after all. More about this just below.

2. DISCUSSION

- 2.1. Nuisances. As it stands upt to this point
 - (1) Ω_K is too big, or
 - (2) \mathcal{B}_K is too small.

In fact, the continuous functions are not in \mathcal{B}_K , essentially because to determine a continuous function it is not sufficient to know what happens in a finite (or countable) points of its domaint. See Durrett, Ex. 8.1.1.

How to make sense of the existence of continuous modification a.s. then? Should we not have $\mathbb{P}(C[0,T]) = 1$ in some sense? This has been answered. We sketch here the answer:

(1) show $P(\Omega_D) = 1$ where

 $\Omega_D = \{F : D \to (\mathbb{R}^d), F \text{ is unformily continuous}\} \subset C[0, T], D \text{ countable dense in}[0, T];$

- (2) $\Omega_D \subset \Omega$, so it induces (lifts to) a probability measure \overline{P} on $\Omega = C[0,T]$;
- (3) show \overline{P} has the associated distributions F_{t_1,\ldots,t_k} .

 \overline{P} is the Wiener measure and $\Omega = C[0,T]$ is called the Wiener space. See [Var80, Section 4] or [Dur96, Theorem 8.1.12] for this.

3. Food for thought

It was suggested that we can construct the Wiener measure directly on C[0,T], by carrying out the proof with another σ algebra introducing a topology first and taking the Borel σ algebra afterwards. We can go with:

- (1) the topology τ_p generated by all evaluation maps (this is the smallest topology that renders evaluation maps continuous) on Ω_K ;
- (2) the topology τ_u generated by all linear functionals (not only the evaluation maps).

WIENER MEASURE

In our understanding, this is still problematic: we are adding more restrictions to the generating set of the σ - algebra, so we think that the final configuration should observe $\sigma(\tau_u) \subset \sigma(\tau_p) \subset \mathcal{B}_K$, a priori. Are we making the problem worst? Recall that the problem was that \mathcal{B}_K was too small as it did not even contain C[0, T]. A more careful analysis is needed.

In any case, historically Wiener is supposed to have built Wiener process directly in C[0, 1]: how was that construction carried out?

4. Quasi-invariance

The Wiener space C[0,T] is a separable Banach space under the uniform norm. Separability comes from approximation by Bernestein polynomials of rational coefficients, which form a countable subspace of the Wiener space. See a proof based on LLN in [Dur96, Example 2.2.1].

The Wiener measure is quasi-invariant for translations. Let γ be the Wiener measure.

Theorem 4.1 (Cameron-Martin). $\gamma_h = \gamma(\cdot - h)$ is absolutely continuous wrt to γ iff $h \in H_0^1[0,T]$, where

$$H_0^1[0,T] = \{\varphi \text{ absolutely continuous on } [0,T], \varphi(0) = 0, \dot{\varphi} \in L_2(0,T)\}.$$

See [Hai09, Theorem 3.41] here.

 $H_0^1[0,T]$ is called the Cameron-Martin space. It is a Hilbert space under the scalar product

$$(h,g)_{H_{\gamma}} = (h,g)_{\gamma} = \int_0^T \dot{h}(s)\dot{g}(s)ds$$

and there is Sobolev embedding $H_0^1[0,T] \simeq W^{1,2}(0,T) \hookrightarrow C[0,T]$ (see [AF03, Theorem 4.12]).

At the seminar there has been a discussion about measure on groups and invariance of the measure by the group operation.

In some sense the Wiener measure is quasi-invariant for the additive group of translations. Note that the "quasi" takes out almost too many things: first, it is not the case that the measures are invariant, but rather that they give the same null sets; secondly, the only allowed translations are the ones in the space $H_0^1[0,T]$, other than that the measures are singular; and, at last, it can be shown that this space is very "small" $\gamma(H_0^1[0,T]) = 0$. See [Hai09, section 3.2] here.

In general, this is the common situation in infinite dimensional spaces: there is no locally finite and translation invariant measure in separable Banach spaces. See a short proof at Wiki.

This is almost the opposite situation of that of the finite dimensional case. To see this: take a non degenerate Gaussian measure in \mathbb{R}^d , then the covariance matrix C is definite-positive and the Cameron-Martins space is $\sqrt{C}\mathbb{R}^d \simeq \mathbb{R}^d$: every direction gives an equivalent measure. For degenerate measures we are just moving the point measure around, so we get the same.

5. "Abstract non-sense" and deviations

The Wiener measure can be considered as a particular case of Gaussian measure on a separable Banach space. This is extensively studied in [Bog98, Bax76] but we only make the following closing remarks.

An abstract Wiener space is a triple (i, H, E) where E is separable Banach space and H is a Hilbert space continuously embedded in E. The injection i is the embedding. This definition abstracts the situation encountered for the Wiener measure, discussed above: E = C[0, T], $H = H_0^1[0, T]$ and i is the inclusion map.

In general, given a Gaussian measure in a separable Banach space E, the asymptotic behavior of a $\mu_{\varepsilon} = \mu(\frac{\cdot}{\varepsilon})$, as ε vanishes is described using the above construction. For sake of interpretation, think of X as an E-valued zero-mean Gaussian element. And think in terms of evolution: as ε vanishes what

WIENER MEASURE

happens to the laws $\mu_{\varepsilon}(A) = \mathbb{P}(\varepsilon X \in A)$, A Borel of E? The law of εX becomes more concentrated at 0, s ε vanishes. This becomes encoded in a property called the large deviations principle. Loosely speaking, the next function encodes how "how much probability mass there is around a point" $x \in E$, or "how much energy is required to be at" x. The rate function is

$$I(x) = \begin{cases} \frac{1}{2} |x|^2_{\mu}, \ x \in H_{\mu} \\ \infty, \text{otherwise} \end{cases}$$

where $(H_{\mu}, (\cdot, \cdot)_{\mu})$ is the Cameron-Martin space associated to μ the Gaussian law of X: it is embedded in E. Hence we obtain another example of an abstract Wiener space: (i, H_{μ}, E) . See [DPZ92, Section 12.1.2].

References

- [AF03] R. A. Adams and J. J. F. Fournier, Sobolev spaces, second ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.
- [Bax76] Peter Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976), no. 4, 891–952.
- [Bog98] Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998.
- [DPZ92] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.
- [Dur96] Richard Durrett, Probability: theory and examples, second ed., Duxbury Press, Belmont, CA, 1996.

[Hai09] M. Hairer, An introduction to stochastic pdes, ArXiv e-prints (2009).

[Var80] S. R. S. Varadhan, Lectures on diffusion problems and partial differential equations, vol. 64, Tata Institute of Fundamental Research, Bombay, 1980, With notes by Pl. Muthuramalingam and Tara R. Nanda.