
M705 Spring 2013 Summary for Week 2

1 Intro to RMT (Gene)

(Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) )
We start with two independent families of R.V.s, {Zi,j}1≤i<j≤n and {Yi}1≤i≤n. The Z’s are

mean-zero and variance-one. We also impose the condition rk = max(E|Zi,j|k, E|Yi|k) <∞.
To construct the Wigner Matrix, use the Y ’s as diagonals and place the Z’s away from

the diagonal with the stipulation of symmetry. Scale the entire resulting matrix by 1/
√
N .

We are interested in the properties of the eigenvalues of the matrix. For real Y ’s and
Z’s, the eigenvalues are also real. Let the eigenvalues be λNi , and order them in increasing
order: λN1 ≤ λN2 ≤ ... ≤ λNN .

Let the empirical measure LN be:

LN =
1

N

N∑
i=1

δλNi (1)

And let the semicircle distribution σ(x)dx on R be:

σ(x) =
1

2π

√
4− x2I|x|≤2 (2)

Wigner showed that: (Wigner semicircle theorem) LN converges weakly, in prob., to the
semicircle distribution; i.e.

lim
n→∞

P (| < LN , f > − < σ, f > | > ε) = 0

for all f ∈ Cb(R) and all ε > 0.
The proof of the theorem employs the Method of Moments.
Define mkL =< σ, xk >.
It can be shown that in the given context, m2k = ck and m2k+1 = 0, where ck are the

Catalan numbers (named after a 19th century Belgian mathematician) with ck = (2k)!
(k+1)!k!

.
Follow the statements of three lemmas.
Lemma 1: ck ≤ 4k.
Lemma 2: Let LN = ELN . Then < LN , f >= E < LN , f >. Also let mN

k L =< LN , x
k.

The Lemma states that for all k ∈ N, we have limN→∞m
N
k = mk.

Lemma 3: For all k ∈ N and ε > 0,

lim
N→∞

P (| < LN , x
k > − < LN , x

k > | > ε) = 0.

We can prove Wigner’s theorem using the three lemmas.
For f ∈ Cb(R), we want to show that

lim
N→∞

< LN , f > − < σ, f >

1



in probability. Via Chebyshev, we obtain

P (< LN , |x|kI|x|>B > ε) ≤ 1

ε
E < LN , |x|kI|x|>B >≤

< LN , x
2k >

εBk

By Lemmas 2 and then 1,

lim supP (< LN , |x|kI|x|>B >> ε) ≤ < σ, x2k >

εBk
≤ 4k

εBk
.

Observe that
lim
B→∞

lim sup
N→∞

P (< LN , |x|kI|x|>B >> ε) = 0.

Finally, for a fixed δ, we use the Weierstrass approximation theorem to produce a polynomial
Qδ sufficiently close to f , and then break P (| < LN , f > − < σ, f > | > δ) into pieces:

P (| < LN , f > − < σ, f > | > δ) ≤ P (| < LN , Qδ > − < LN , Qδ > | > δ/4)+

+ P (| < LN , Qδ > − < σ,Qδ > | > δ/4)+

+ P (| < LN , QδI|x|>B > | > δ/4)+

+ P (| < LN , fI|x|>B > | > δ/4)

All terms go to 0, which completes the proof.

2 A Selected Application of RMT (Albert)

(Also see Thomas Guhr’s research summary, available here:

http://www.theo-phys.uni-essen.de/tp/ags/guhr_dir/encrmt.pdf

For more on the Wigner surmise, see Madan Lal Mehta’s book.)
The goal is to study energy correlations of quantum spectra. Supposing that the spectrum

of a quantum system has been measured or calculated, all levels in the total spectrum
having the same quantum numbers form one particular subspectrum. Its energy levels are
at positions xn with n = 1, 2, ..., N . Assume N is large.

With a proper smoothing procedure, we obtain the level density R1(x), meaning the
prob.density of finding a level at the energy x. The level density increases with x for most
physics systems.

However, we are interested in the spectral correlations rather than in the density. Hence
we have to remove the density from the subspectrum (this is called unfolding). To that
end we introduce a new dimensionless energy scale ξ s.t. dξ = R1(x)dx. By construction,
the resulting subspectrum in ξ has level density unity. It is understood that the energy
correlations are analyzed in the unfolded subspectra.
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Consider the nearest neighbor spacing distribution p(s), i.e. the prob. density of finding
two adjacent levels in the distance s. If the positions of the levels are uncorrelated, the
nnsd is exponential: p(P )(s) = exp(−s). Such cases are occasionally found, but many more
systems follow the Wigner surmise distribution: p(W )(s) = π

2
s exp(−π

4
s2). See figure 2.

Does there exist a convenient mathematical model for such patterns? Yes, RMT.
To describe absence of correlations, consider a diagonal HamiltonianH = diag(x1, ..., xN),

the eigenvalues xn of which are uncorrelated random numbers. To model correlation, con-
sider a full symmetric Hamiltonian with H = HT and independent random entries Hnm.
It turns out these two models yield precisely the Exponential distribution and the Wigner
surmise we saw above.

3 Types of RMs; generation of RMs (Radoslav)

3.1 (Alan Izenman: Introduction to RMT document)

Dyson 1962 classifies RM into three types based upon time-reversal invariance: 1) complex
(non-time-reversal-invariant); 2) real (time-reversal invariant); 3) self-dual quaternion (time-
reversal invariant with a restriction).

RM theory used in number theory, combinatorics, wireless communications, and multi-
variate statistical analysis and principal component analysis.

3



An ensemble of random matrices is a family/ collection of RM with a prob. density p
that shows how likely a member of the family is to be observed.

Wigner and Dyson used n × n Hermitian matrices Hn with density e−βtr[V (Hn)] where
V is some function of Hn, e.g. a finite polynomial function of Hn with even highest power
and positive leading coefficient and constant of proportionality dependent only on n. E.g.:
V (Hn) = aH2

n + bHn + c, where a, b, c are real and a > 0. The entries of Hn can be real
(β = 1), complex (β = 2), or real-quaternion (β = 4).

“Time-reversal” transformation: Hn → UHnU
−1, where U is orthogonal (β = 1), unitary

(β = 2), or symplectic (β = 4). Time-reversal invariance implies that the time-reversal
transformation leaves the density of Hn invariant.

And so the three Gaussian ensembles are: 1) Gaussian orthogonal ensemble (GOE), 2)
Gaussian unitary ensemble (GUE), and 3) Gaussian symplectic ensemble (GSE).

Case 1: A is an (n×n) matrix with iid standard normal entries. Hn can be produced via
Hn = (A + Aτ )/2 where Aτ is the transpose of A. The diagonal entries of Hn are standard
normal iids, and the off-diagonal entries are iid (up to symmetry) normals with mean-0
variance-a-half.

Case 2: A now has complex-valued iid standard-complex-normal entries. We form Hn

via Hn = (A + A∗)/2, where A∗ is the Hermitian transpose of A. The diagonal entries of
Hn are iid standard normals and the off-diagonal entries are iid (up to Hermitian property)
bi-normal mean-0 variance-a-half.

Case 3: Now A’s entries are real-quarternian iid fromNQ(0, 1). We haveHn = (A+AD)/2
where AD is the dual transpose of A.

For GOE, U is orthogonal with real entries, for GUE U is unitary with complex entries,
and for GSE U is symplectic with self-dual qaternion entries. GOE is used in quantum
mechanics for time-reversal invariance.

The Wigner Matrix is a real symmetric n × n matrix Hn with diagonal entries 0 and
off-diagonal entries uniform ±1. The GOE matrix is also called Winger Matrix, since it
extends the original Wigner Matrix. In general, one is not restricted to Gaussian entries
- other distributions also work, as long as one has the same independence and the same
variance as with the GOE.

3.2 (Edelman-Rao RMT document)

Most well-studied RM have names such as: Gaussian, Wishart, MANOVA, and circular. Or
Hermite, Laguerre, Jacobi and Fourier.

Hermite Ensemble – symmetric eigenvalue decomposition – e−x
2/2 weight function – semi-

circular law (W’58).
Laguerre Ensemble – singular value decomposition – xae−x weight function – Marcenko

and Pastur ’67.
Jacobi Ensemble – generalized SVD – (1− x)a(1 + x)b w.f. – generalized McKay law.
Fourier Ensemble – unitary eigenvalue decomposition – ejθ – uniform.
In multivariate statistics people are interested in random covariance matrices (Wishart

matrices). The construction here is: A′A where A is Gβ(m,n) and A′ denotes AT , AH or AD

depending on whether A is real, complex or quaternion.
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Manova Ensemble: symmetric/ Hermitian/ self-dual n× n matrix, given by A/(A+B),
where A and B are Wβ(m1, n) and Wβ(m2, n) respectively.

Circular Ensembles: Given by UTU and U for β = 1, 2 respectively, with U a uniformly
distributed unitary matrix.

3.3 (Tao’s book ch2.3)

Iid matrix ensembles - all entries in a square matrix are iid r.v.s with the same distribution.
Bernoulli, real gaussian, and complex gaussian ensembles defined implicitly.

Symmetric Wigner matrix ensembles defined as above.
Hermitian Wigner as above.

3.4 (Anderson-Guionnet-Zeitouni book p.6)

Construction of Wigner matrix:
Start with two independent families of iid mean-zero, real-valued r.v.s {Zi,j}1≤i<j and

{Yi}1≤i s.t. EZ2
1,2 = 1 and for all natural k, rk := max(E|Z1,2|k, E|Y1|k) <∞.

The symmetric N × N matrix XN with entries Zi,j/
√
N and Zj,i/

√
N away from the

main diagonals, and Yi/
√
N on the main diagonal is called a Wigner matrix. If the r.v.s are

Gaussian, the matrix is a Gaussian Wigner matrix.

3.5 (Some sources)

1. Random matrix theory by Alan Edelman and N. Raj Rao, Acta Numerica (2005) pp.
1-65, Cambridge University Press

2. Introduction to Random-Matrix Theory by Alan J. Izenman
3. Applications of Random Matrices in Physics by E. Brezin, V. Kazakov, D. Serban, P.

Wiegmann, and A. Zabrodin, Proceedings of NATO Advanced Study Institute on Applications
of Random Matrices in Physics (2004), Springer

4. An Introduction to Random Matrices by G. Anderson, A. Guionnet, and O. Zeitouni,
2010, Cambridge University Press

5. Random Matrices (3rd Ed.) by Madan Lal Mehta, 2004, Elsevier
6. Topics in random matrix theory by Terence Tao, 2010-
7. Spectral Analysis of Large Dimensional Random Matrices (2nd ed.) by Zhidong Bai

and Jack W. Silverstein, Springer Series in Statistics, 2010, Springer
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