
Summary1 of Convergence for Probability Measures.

Notations:

(1) (X,X ), a measurable space;
(2) P(X), the collection of probability measures on (X,X );
(3) ν, µ, µ1, µ2, . . . ∈ P(X);
(4) µ[f ] =

∫
X
f dµ, f : X → R.

General Definitions.

• Set-wise (strong) convergence: limn→∞ µn
s
= µ: limn→∞ µn(A) = µ(A) for all A ∈ X ;

• Total variation distance: dTV(µ, ν) = 2 supA∈X |µ(A)− ν(A)|;
• Convergence in total variation: limn→∞ µn

TV
= µ: limn→∞ dTV(µn, µ) = 0.

The special case: X is a metric space, with metric ρ, and X = B(X).
Definitions.

• weak convergence limn→∞ µn
w
= µ: limn→∞ µn[f ] = µ[f ] for all bounded continuous f .

• the Lévy-Prokhorov metric:

d
LP
(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε, A ∈ B(X)},

where Aε = {x ∈ X : inf
y∈A

ρ(x, y) ≤ ε}.
• tightness: the collection {µn, n ≥ 1} is tight if, for every ε > 0, there exists a compact
Kε ⊂ X so that, for all n, µn(Kε) ≥ 1− ε.

• relative compactness: the collection {µn, n ≥ 1} is relatively compact if every sub-
sequence contains a weakly converging sub-sub-sequence.

Results.

(1) Weak convergence defines topology on P(X).
(2) Portmanteau theorem: the following conditions are equivalent

• limn→∞ µn
w
= µ;

• limn→∞ µn[f ] = µ[f ] EITHER for all bounded, uniformly continuous f OR for all
bounded Lipschitz continuous2 f ;

• lim supn→∞ µn(G) ≤ µ(G) for all closed sets G ⊂ X;
• lim infn→∞ µn(G) ≥ µ(G) for all open sets G ⊂ X;
• limn→∞ µn(G) = µ(G) for all measurable G with boundary ∂G such that µ(∂G) = 0.

(3) Continuous mapping theorem: if Y is another metric space and h : X → Y is a continu-

ous function, then weak convergence limn→∞ µn
w
= µ implies weak convergence limn→∞ µn ◦

h−1 w
= µ ◦ h−1, where, for a measure ν ∈ P(X), the measure ν ◦ f−1 ∈ P(Y ) is defined by

ν ◦ h−1(B) = ν
(
x ∈ X : h(x) ∈ B

)
, B ∈ B(Y ).

(4) Prohorov’s theorem: tightness implies relative compactness.

The most special case: X is a complete separable metric3 space.
Results.

(1) limn→∞ µn
w
= µ if and only if limn→∞ d

LP
(µn, µ) = 0.

(2) Prohorov’s theorem: tightness is equivalent4 to relative compactness.

1Sergey Lototsky, USC; version of June 11, 2023.
2|f(x)− f(y)| ≤ Lfρ(x, y), x, y ∈ X
3That is, Polish metric, which is not exactly the same as simply Polish...
4If X is not complete and separable, then a single probability measure µ ∈ P(X) might not be tight.
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Further developments.
Let F be a (sufficiently rich) collection of functions f : X → R. Then we can define the

corresponding F-convergence by

lim
n→∞

µn
F
= µ ⇐⇒ lim

n→∞
µn[f ] = µ[f ] ∀f ∈ F.

In particular, for a metric space X, the vague convergence is the F-convergence with F equal the
set of compactly supported functions (or, sometimes, the closure of this set with respect to uniform
convergence).

Similarly, given another (sufficiently rich) collectionG of function, we can define the pseudometric5

on P(X) by
dG(µ, ν) = sup

f∈G

∣∣µ[f ]− ν[f ]
∣∣,

as well as the convergence in this pseudometric. For example,

(1) If G is the set of all bounded measurable functions, then dG = dTV.
(2) If X = R and G is the collection of indicator functions of the sets (−∞, x] for all x ∈ R,

then dG is the Kolmogorov metric.
(3) If X is a metric space and G is the collection of continuous functions satisfying |f | ≤ 1,

then the dG is the Radon metric.

Further modifications of this construction lead to the Wasserstein distance Wp, p ≥ 1.
For a comprehensive survey of this topic, see the paper

Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics.
International Statistical Review, 70(3):419–435, 2002.

Random Probability Measures.
Definition. A random probability measure µ on (X,X ) is a kernel from the underlying

probability space (Ω,F ,P) to (X,X ). In other words, µ = µ(ω,A), ω ∈ Ω, A ∈ X , is a function
such that ω 7→ µ(ω,A) is a random variable for every A and A 7→ µ(ω,A) is a probability measure
on (X,X ) for every ω. In particular, 0 ≤ µ(ω,A) ≤ 1.

Many examples from applications involve random point measures of the form

µ(A) =
1

N

N∑
k=1

1(ξk ∈ A),

where ξk, k = 1, . . . , N are X-valued random variables. Non-probability measures can also appear,
for example, in the study of random processes with jumps.

A sequence {µn, n ≥ 1} of random probability measures can converge to the limit µ (random or
deterministic) in a variety of ways, combining different modes of convergence for measures and for
random variables. Here are some examples:

• weak convergence in probability or with probability one (or in distribution, or in Lp): for ev-
ery bounded continuous f : X → R, limn→∞ µn[f ] = µ[f ] in probability or with probability
one (or in distribution, or in Lp);

• convergence in expectation: for every bounded continuous f , limn→∞ Eµn[f ] = Eµ[f ]
Vague convergence can be considered instead of weak6. For details, see

Olav Kallenberg. Random Measures, Theory and Applications. Probability Theory and Stochastic
Modelling. Vol. 77. Springer, 2017,

in particular, Section 1.3 and Chapter 4.

5all properties of distance are obvious except dG (µ, ν) = 0 might not imply µ = ν.
6In particular, this is why no topology is fixed on P(X) in the basic definition of a random measure.


