$Summary^{1}$ of Convergence for Probability Measures.

Notations:

- (1) $(\boldsymbol{X}, \mathcal{X})$, a measurable space;
- (2) $\mathcal{P}(\mathbf{X})$, the collection of probability measures on $(\mathbf{X}, \mathcal{X})$;
- (3) $\nu, \mu, \mu_1, \mu_2, \ldots \in \mathcal{P}(\boldsymbol{X});$
- (4) $\mu[f] = \int_{\boldsymbol{X}} f \, d\mu, \, f : \boldsymbol{X} \to \mathbb{R}.$

General Definitions.

- Set-wise (strong) convergence: $\lim_{n\to\infty}\mu_n \stackrel{s}{=} \mu$: $\lim_{n\to\infty}\mu_n(A) = \mu(A)$ for all $A \in \mathcal{X}$;
- Total variation distance: $d_{TV}(\mu, \nu) = 2 \sup_{A \in \mathcal{X}} |\mu(A) \nu(A)|;$
- Convergence in total variation: $\lim_{n\to\infty} \mu_n \stackrel{\text{TV}}{=} \mu$: $\lim_{n\to\infty} d_{\text{TV}}(\mu_n, \mu) = 0$.

The special case: X is a metric space, with metric ρ , and $\mathcal{X} = \mathcal{B}(X)$. DEFINITIONS.

- weak convergence $\lim_{n\to\infty} \mu_n \stackrel{w}{=} \mu$: $\lim_{n\to\infty} \mu_n[f] = \mu[f]$ for all bounded continuous f.
- the Lévy-Prokhorov metric:

$$d_{LP}(\mu,\nu) = \inf\{\varepsilon > 0 : \mu(A) \le \nu(A^{\varepsilon}) + \varepsilon, \ A \in \mathcal{B}(\mathbf{X})\},\$$

where $A^{\varepsilon} = \{x \in \mathbf{X} : \inf_{y \in A} \rho(x, y) \le \varepsilon\}.$

- tightness: the collection $\{\mu_n, n \ge 1\}$ is tight if, for every $\varepsilon > 0$, there exists a compact $K_{\varepsilon} \subset \mathbf{X}$ so that, for all $n, \mu_n(K_{\varepsilon}) \ge 1 \varepsilon$.
- relative compactness: the collection $\{\mu_n, n \ge 1\}$ is relatively compact if every sub-sequence contains a weakly converging sub-sub-sequence.

RESULTS.

- (1) Weak convergence defines topology on $\mathcal{P}(\mathbf{X})$.
- (2) Portmanteau theorem: the following conditions are equivalent
 - $\lim_{n\to\infty}\mu_n \stackrel{w}{=} \mu;$
 - $\lim_{n\to\infty} \mu_n[f] = \mu[f]$ EITHER for all bounded, *uniformly* continuous f OR for all bounded *Lipschitz* continuous² f;
 - $\limsup_{n\to\infty} \mu_n(G) \le \mu(G)$ for all *closed* sets $G \subset \mathbf{X}$;
 - $\liminf_{n\to\infty} \mu_n(G) \ge \mu(G)$ for all open sets $G \subset \mathbf{X}$;
 - $\lim_{n\to\infty} \mu_n(G) = \mu(G)$ for all measurable G with boundary ∂G such that $\mu(\partial G) = 0$.
- (3) Continuous mapping theorem: if \mathbf{Y} is another metric space and $h: \mathbf{X} \to \mathbf{Y}$ is a continuous function, then weak convergence $\lim_{n\to\infty} \mu_n \stackrel{w}{=} \mu$ implies weak convergence $\lim_{n\to\infty} \mu_n \circ h^{-1} \stackrel{w}{=} \mu \circ h^{-1}$, where, for a measure $\nu \in \mathcal{P}(\mathbf{X})$, the measure $\nu \circ f^{-1} \in \mathcal{P}(\mathbf{Y})$ is defined by $\nu \circ h^{-1}(B) = \nu (x \in \mathbf{X} : h(x) \in B), B \in \mathcal{B}(\mathbf{Y}).$
- (4) Prohorov's theorem: tightness implies relative compactness.

The most special case: X is a complete separable metric³ space. RESULTS.

- (1) $\lim_{n\to\infty} \mu_n \stackrel{w}{=} \mu$ if and only if $\lim_{n\to\infty} d_{LP}(\mu_n, \mu) = 0$.
- (2) Prohorov's theorem: tightness is equivalent⁴ to relative compactness.

¹Sergey Lototsky, USC; version of June 11, 2023.

 $[|]f(x) - f(y)| \le L_f \rho(x, y), x, y \in \mathbf{X}$

³That is, Polish metric, which is not exactly the same as simply Polish...

⁴If X is not complete and separable, then a single probability measure $\mu \in \mathcal{P}(X)$ might not be tight.

Further developments.

Let \mathfrak{F} be a (sufficiently rich) collection of functions $f : \mathbf{X} \to \mathbb{R}$. Then we can define the corresponding \mathfrak{F} -convergence by

$$\lim_{n \to \infty} \mu_n \stackrel{\mathfrak{F}}{=} \mu \quad \Longleftrightarrow \quad \lim_{n \to \infty} \mu_n[f] = \mu[f] \quad \forall f \in \mathfrak{F}.$$

In particular, for a metric space X, the vague convergence is the \mathfrak{F} -convergence with \mathfrak{F} equal the set of compactly supported functions (or, sometimes, the closure of this set with respect to uniform convergence).

Similarly, given another (sufficiently rich) collection \mathfrak{G} of function, we can define the *pseudometric*⁵ on $\mathcal{P}(\mathbf{X})$ by

$$\mathbf{d}_{\mathfrak{G}}(\boldsymbol{\mu},\boldsymbol{\nu}) = \sup_{f \in \mathfrak{G}} \left| \boldsymbol{\mu}[f] - \boldsymbol{\nu}[f] \right|,$$

as well as the convergence in this pseudometric. For example,

- (1) If \mathfrak{G} is the set of all bounded measurable functions, then $d_{\mathfrak{G}} = d_{TV}$.
- (2) If $X = \mathbb{R}$ and \mathfrak{G} is the collection of indicator functions of the sets $(-\infty, x]$ for all $x \in \mathbb{R}$, then $d_{\mathfrak{G}}$ is the Kolmogorov metric.
- (3) If X is a metric space and \mathfrak{G} is the collection of continuous functions satisfying $|f| \leq 1$, then the $d_{\mathfrak{G}}$ is the Radon metric.

Further modifications of this construction lead to the Wasserstein distance \mathcal{W}_p , $p \geq 1$.

For a comprehensive survey of this topic, see the paper

Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics.

International Statistical Review, 70(3):419–435, 2002.

Random Probability Measures.

DEFINITION. A random probability measure μ on $(\mathbf{X}, \mathcal{X})$ is a *kernel* from the underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to $(\mathbf{X}, \mathcal{X})$. In other words, $\mu = \mu(\omega, A)$, $\omega \in \Omega$, $A \in \mathcal{X}$, is a function such that $\omega \mapsto \mu(\omega, A)$ is a random variable for every A and $A \mapsto \mu(\omega, A)$ is a probability measure on $(\mathbf{X}, \mathcal{X})$ for every ω . In particular, $0 \leq \mu(\omega, A) \leq 1$.

Many examples from applications involve random *point measures* of the form

$$\mu(A) = \frac{1}{N} \sum_{k=1}^{N} 1(\xi_k \in A),$$

where ξ_k , k = 1, ..., N are **X**-valued random variables. Non-probability measures can also appear, for example, in the study of random processes with jumps.

A sequence $\{\mu_n, n \ge 1\}$ of random probability measures can converge to the limit μ (random or deterministic) in a variety of ways, combining different modes of convergence for measures and for random variables. Here are some examples:

- weak convergence in probability or with probability one (or in distribution, or in L_p): for every bounded continuous $f : \mathbf{X} \to \mathbb{R}$, $\lim_{n \to \infty} \mu_n[f] = \mu[f]$ in probability or with probability one (or in distribution, or in L_p);
- convergence in expectation: for every bounded continuous f, $\lim_{n\to\infty} \mathbb{E}\mu_n[f] = \mathbb{E}\mu[f]$

Vague convergence can be considered instead of weak⁶. For details, see

Olav Kallenberg. Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Springer, 2017,

in particular, Section 1.3 and Chapter 4.

⁵all properties of distance are obvious except $d_{\mathfrak{G}}(\mu,\nu) = 0$ might not imply $\mu = \nu$.

⁶In particular, this is why no topology is fixed on $\mathcal{P}(\mathbf{X})$ in the basic definition of a random measure.