The People of Vector Calculus

September 6, 2009

Sergey Lototsky, USC, Dept. of Math.

*** - 1

(Approximate) Time Line

FTC: 1666

Divergence Theorem: 1762

Green's Theorem: 1825

Stokes's Theorem: 1850

Vectors: 1880s

FTC

Library of Con

Sir Isaac Newton (1642–1727): English

Gottfried Wilhelm von Leibniz (1646–1716): German

Divergence Theorem

Joseph-Louis Lagrange (1736–1813): French; b. Italian (1762) Johann Carl Friedrich Gauss (1777–1855): German (1813) Mikhail Vasilievich Ostrogradsky (1801–1862): Ukranian (1831)

George Green

George Green (1793 – 1841): English

1825: Green's Theorem/Formulas/Function
in "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism" (self-published in 1828, about 50 copies)
1833–1837: undergraduate studies at Cambridge

Planimeter

$$\operatorname{area}(G) = \oint_{\partial G} x dy = -\oint_{\partial G} y dx = \frac{1}{2} \oint_{\partial G} x dy - y dx = \frac{1}{2} \oint_{\partial G} r^2 d\theta$$

Mechanical: \$300 Electronic: \$650

Green's Formulas in Space

Laplacian: $\Delta f = \operatorname{div}(\operatorname{grad} f)$ Normal derivative:

$$\frac{df}{dn} = (\operatorname{grad} f) \cdot \widehat{\boldsymbol{n}}$$

First formula:

$$\iiint_G f \Delta g \, dV = -\iiint_G (\operatorname{grad} f) \cdot (\operatorname{grad} g) \, dV + \iint_{\partial G} f \frac{dg}{dn} \, d\sigma$$

Second formula:

J

$$\iiint_G (f\Delta g - g\Delta f) \, dV = \iint_{\partial G} \left(f \frac{dg}{dn} - g \frac{df}{dn} \right) \, dc$$

Kelvin and Stokes

Library of Congre

Kelvin, William Thomson, 1st Baron (1824–1907): British

George Gabriel Stokes (1819–1903): British

The Theorem: 1850, in a letter FROM Kelvin TO Stokes.

1880s: Introduction of Vectors

Josiah Willard Gibbs (1839–1903): American from New Haven, CT Professor at Yale: 1871; first publication: 1873.

Oliver Heaviside (1850–1925): English, self-taught, many brilliant ideas (e.g. Laplace transform to solve ODEs)