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a b s t r a c t

Consider variance stabilizing transformations of Poisson distribution π(λ), binomial
distribution B(n, p) and negative binomial distribution NB(r, p), with square root
transformations for π(λ), arcsin transformations for B(n, p) and inverse hyperbolic sine
transformations for NB(r, p). We will introduce three terms: critical point, domain of
dependence and relative error. By comparing the relative errors of the transformed
variances of π(λ), B(n, p) and NB(r, p), and comparing the skewness and kurtosis of
π(λ), B(n, p) and NB(r, p) and their transformed variables, we obtain some better
transformations with domains of dependence of the parameters. A new kind of
transformation (n+ 1

2 )
1/2 sin−1( 2Y−nn+2a ) for B(n, p) is suggested.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let Y be a random variable with mean E(Y ) = µ and variance Var (Y ). If the relationship between µ and Var (Y )
was known, we could use this information to find a variance stabilizing transformation Z = T (Y ) such that Var (Z) ≈
C2(constant). T (Y ) is expanded at the point Y = µ into a Taylor series: T (Y ) = T (µ)+ T ′(µ)(Y −µ)+ o(Y −µ). By solving
the differential equation T ′(µ) ≈ CVar (Y )−1/2, we obtain T (Y ). In Proposition 1, we list some well-known transformations
(see Chatterjee et al. (2000) and Montgomery (2005)).

Proposition 1. (1) If Y ∼ π(λ) (Poisson distribution), T (Y ) =
√
Y with Var (

√
Y ) ≈ 1

4 .
(2) If Y ∼ B(n, p) (binomial distribution), T (Y ) =

√
n sin−1

√
Y/n with Var (

√
n sin−1(

√
Y/n)) ≈ 1

4 .
(3) If Y ∼ NB(r, p) (negative binomial distribution), its frequency function is P(Y = k) = (k+r−1r−1 )pr(1 − p)k(k =
0, 1, 2, . . . , r > 1), and then T (Y ) =

√
r sinh−1

√
Y/r with Var (

√
r sinh−1

√
Y/r) ≈ 1

4 .

Bartlett (1936, 1947) first introduced variance stabilizing transformations, and proposed the transformation
√
Y + 0.5

for Y ∼ π(λ). Anscombe (1948) showed that
√
Y + 3/8 is the most nearly constant variance transformation for Y ∼ π(λ)

when Y has a larger mean λ, and sin−1
√
Y+3/8
n+3/4 for Y ∼ B(n, p) similarly. Freeman and Tukey (1950) suggested combined

transformations (
√
Y +
√
Y + 1) for Y ∼ π(λ) and (n + 1

2 )
1/2
[sin−1

√
Y
n+1 + sin

−1
√
Y+1
n+1 ] for Y ∼ B(n, p). The method

of combined transformation was generalized to NB(r, p) by Laubscher (1961). Thacker and Bromiley (2001) and Bromiley
and Thacker (2002) investigated the effects of stabilizing transformations on a Poisson distributed quantity and a binomial
distributed quantity. Uddin et al. (2006) presented a necessary condition for a variance stabilizing transformation to be an
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Fig. 1. Five transformed variance curves on π(λ) for λ ∈ [0.5, 10] (left panel) and λ ∈ [10, 200] (right panel).

approximate symmetrizing transformation. For more general data, the Box–Cox transformation is often used (see Box and
Cox (1964), Box and Cox (1982) and Yamamura (1999)).
For Y ∼ π(λ), Anscombe (1948) showed that Var (

√
Y + a) = 1

4 {1 +
3−8a
8λ + O(λ

−2)} ≈ 1
4 for large mean λ and

any constant a ≥ 0. On the other hand, it is clear that limλ→0 Var (
√
Y + a) = 0 for any constant a ≥ 0. This implies

that
√
Y + a is only a local variance stabilizing transformation. There is the same case for binomial variables and negative

binomial variables. Our task is to find those transformations such that variances of transformed variables change less in
larger domains of dependence, i.e. domains of parameters.
Since exact formulas for transformed variances could not be obtained, numerical methods are applied to calculate these

variances of various transformed random variables. By virtue of mass numerical computation, we compare fluctuations
of these variances and obtain some better transformations with their domains of dependence. The selection criterion is
less fluctuation of variances with respect to a larger domain of dependence of parameters. In this paper, we will compute
parameters λ, p and a to the third place of decimals.
In Section 2, we study transformation

√
Y + a and its combined transformations for Y ∼ π(λ), and introduce three

concepts: left critical point, domain of dependence and relative error, to describe the stabilization of a transformation. In

Section 3, we show that a new kind of transformation (n + 1
2 )
1/2 sin−1( 2Y−nn+2a ) is equivalent to (n +

1
2 )
1/2 sin−1

√
Y+a
n+2a for

Y ∼ B(n, p). We also give the limit relation between NB(r, p) and π(λ), and investigate three transformations for NB(r, p)
in Section 4. In the last section, the skewness and kurtosis of these three kinds of variables and variables transformed by
various transformations are computed and compared. Some better variance stabilizing transformations with domains of
dependence of parameters on π(λ), B(n, p), NB(r, p) are suggested.

2. Poisson distribution

Proposition 2. Let Y ∼ π(λ) and a1 > a2 ≥ 0; then Var (
√
Y + a1) < Var (

√
Y + a2).

Proof. Let δ = a1 − a2 > 0 and pk = P(Y = k) = λk

k! e
−λ (k = 0, 1, 2, . . .). We have E[(

√
Y + ai)2] = λ+ ai (i = 1, 2), and

Var (
√
Y + a1)− Var (

√
Y + a2) = δ −

[+∞∑
k=0

√
k+ a1 pk

]2
−

[
+∞∑
k=0

√
k+ a2 pk

]2
< δ −

+∞∑
k=0

δ p2k − 2
∑
m>n≥0

δ pmpn = δ − δ

(
+∞∑
k=0

pk

)2
= 0. (1)

Here,
√
(m+ a1)(n+ a1) −

√
(m+ a2)(n+ a2) > δ, since [

√
(m+ a1)(n+ a1)]2 − [

√
(m+ a2)(n+ a2) + δ]2 = δ (m +

a2 + n+ a2)− 2δ
√
(m+ a2)(n+ a2) > 0. �

Remark. Proposition 2 tells us that Var(
√
Y + a) is amonotone decreasing function of a. Note that there is only one constant

a′ at most such that Var (
√
Y + a′) = 0.25 for each λ.

By numerical computation, we obtain the following (see Fig. 1 and Table 1).
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Table 1
Variances under transformation by

√
Y + a.

a λM VM − 0.25 λm Vm − 0.25 λL V1000 − 0.25 ∆

0 1.319 .1625 1000 .05939 0.352 .05939 .6496
0.100 2.086 .0468 1000 .04688 0.898 .04688 .1871
0.200 2.786 .0203 1000 .04438 1.450 .04438 .0811
0.300 3.835 .02651 1000 .04188 2.347 .04188 .0260
0.350 4.769 .02223 1000 .05627 3.237 .05627 .02889
0.375 5.624 .03623 1000 .07162 4.206 .07162 .02251
0.380 5.890 .03354 27.660 −.04239 4.558 −.05123 02151
0.384 6.158 .03148 16.751 −.04745 4.915 −.05224 .03890
0.385 6.237 .04983 15.417 −.04911 5.021 −.05249 03757
0.386 6.321 .04495 14.331 −.03119 5.135 −.05274 .03634
0.387 6.413 .05170 13.422 −.03128 5.261 −.05289 .03520

0.500 1000 −.04313 .0289 .0415 .0705 .1458 .3588

Table 2
Some better variance stabilizing transformations on π(λ).

a λL ∆ ∆5 ∆4 ∆3 ∆2 ∆1 ∆0.5

0.385 5.021 .03189 .03792 .02731 .0220 .0823 .2899 .5373
0.375 4.206 .03623 .02251 .02376 .0194 .0782 .2851 .5356
(0, 1) 1.189 .0690 .0103 .0251 .0501 .0690 .1183 .3885
(0, 1.25) 1.328 .0464 .0267 .0267 .0332 .0464 .1190 .3791
(0, 1.3) 1.354 .0429 .0302 .0302 .0307 .0429 .1190 .3772
(0, 0.75) 1.027 .1072 .0252 .0459 .0791 .1072 .1157 .3984
(0.01, 1) 1.687 .0278 .02557 .0139 .0254 .0278 .1552 .4174
(0.02, 1) 2.007 .0158 .02357 .02928 .0156 .0161 .1720 .4307
(0, 1, 0.8) 0.973 .1127 .0191 .0402 .0763 .1121 .1127 .3844

(1) When a ∈ [0, 0.375], there exists a special point λ0(a) such that Var (
√
Y (λ)+ a) is a monotone increasing function of

λ ∈ (0, λ0(a)] and a monotone decreasing function of λ ∈ (λ0(a),+∞).
(2) When a ∈ [0.376, 0.392] and the positive parameter λ increases, Var (

√
Y (λ)+ a) at first shows monotone increase,

then monotone decrease, then monotone increase, and so on.
(3) When a ≥ 0.393, Var (

√
Y (λ)+ a) is a monotone decreasing function of λ ∈ (0,+∞).

According to the characteristic of Var (
√
Y (λ)+ a) curves, for a ≤ 0.392 we introduce a concept ‘left critical point’ λL

which satisfies the following conditions:

(1) There exist both amaximum and aminimum of Var (
√
Y (λ)+ a) for λ ∈ (λL, 1000], but nomaximum and nominimum

of Var (
√
Y (λ)+ a) for λ ∈ (0, λL).

(2) Var (
√
Y (λL)+ a) ≥ Var (

√
Y (λm)+ a) > Var (

√
Y (λL − 0.001)+ a).

(3) Var (
√
Y (λm)+ a) = min{Var (

√
Y (λ)+ a)|λ ∈ (λL, 1000]}, Var (

√
Y (λM)+ a) = max{Var (

√
Y (λ)+ a)|λ ∈

(λL, 1000]}.

Whenλ ∈ [λL, 1000], the fluctuation of Var (
√
Y (λ)+ a) is less.Whenλ ∈ (0, λL) decreases, Var (

√
Y (λ)+ a) decreases

violently. Interval [λL, 1000] or [λL,+∞) is called the ‘domain of dependence’ of parameter λ.
In order to describe the fluctuation of variances precisely, we define the ‘relative error’ of the variance for parameter

θ ∈ Θ as follows:

∆ =

max
θ1,θ2∈Θ

{|Var (θ1)− Var (θ2)|}

Var ∗
. (2)

Here Var ∗ is the limit value of Var (θ) (θ ∈ Θ). For π(λ), B(n, p) and NB(r, p), by Proposition 1 their Var ∗ are all 1/4.
In Table 1, VM = Var

√
Y (λM)+ a, Vm = Var

√
Y (λm)+ a, Vλ = Var

√
Y (λ)+ a. The last column denotes the relative

error∆ forλ ∈ [λL, 1000]. The last rowdenotes the transformation
√
Y + 0.5; its variance is amonotone increasing function

of λ > 0, and this means that
√
Y + 0.5 is not a better transformation. When λ ≥ 5, the left critical point of

√
Y + 0.385 is

the most proximal to 5, and thus
√
Y + 0.385 is almost the best variance stabilizing transformation of π(λ) for λ ≥ 5. And

so is
√
Y + 3/8 for λ ≥ 4.

Nowwe discuss the combined transformation b1
√
Y+a1+b2

√
Y+a2

b1+b2
(b1+ b2 6= 0). After much calculation, we are convinced

that the combined transformation b1
√
Y+a1+b2

√
Y+a2

b1+b2
might be seen as a compromise between

√
Y + a1 and

√
Y + a2. For

example,
√
Y+
√
Y+1
2 improves the variance stabilization of

√
Y and

√
Y + 1 extremely.
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Fig. 2. Five transformed variance curves on B(n, p) for n = 50 and p ∈ [0.02, 0.5].

Table 2 lists some better transformations and combined transformations for a Poisson variable, where a, (a1, a2) and
(a1, a2, b) respectively denote the transformations

√
Y + a,

√
Y+a1+

√
Y+a2

2 and
√
Y+a1+b

√
Y+a2

1+b , and∆k represents the relative
error of the transformed variances λ ∈ [k, 1000] (k = 5, 4, 3, 2, 1, 0.5).

3. Binomial distribution

Proposition 3. Let Y ∼ B(n, p); then T (Y ) = sin−1( 2Y−nn ) is a variance stabilizing transformation and Var (sin−1( 2Y−nn )) ≈
1/n.

Proof. We have dTdY =
2
n {1− (

2Y−n
n )2}−1/2 = 1

√
n {
Y
n (1−

Y
n )
1
n }
−1/2. Therefore Var (sin−1( 2Y−nn )) ≈ 1/n. �

Proposition 4. Let Y ∼ B(n, p), T1(Y , a) = sin−1
√
Y+a
n+2a , T2(Y , a) = sin

−1( 2Y−nn+2a ) and a ∈ [0, 1]. Then:

(1) T1(n− Y , a) = π/2− T1(Y , a), T2(n− Y , a) = −T2(Y , a);
(2) T2(Y , a) = 2T1(Y , a)− π/2;
(3) Var (Ti(n− Y , a)) = Var (Ti(Y , a)) (i = 1, 2), Var (T2(Y , a)) = 4Var (T1(Y , a)).

Proof. (1) Considering sin2{sin−1( Y+an+2a )
1/2
} + sin2{sin−1( n−Y+an+2a )

1/2
} = 1,we have T1(n− Y , a) = π

2 − T1(Y , a). Similarly,
T2(n− Y , a) = −T2(Y , a).

(2) Considering cos(2T1(Y , a)) = 1− 2 sin2(T1(Y , a)) = − sin(T2(Y , a)),we have T2(Y , a) = 2T1(Y , a)− π/2.
(3) By items (1) and (2), the equalities of item (3) are easily obtained. �

Remark. By Proposition 4, sin−1( 2Y−nn+2a ) is a negative symmetrical transformation with axis of symmetry Y = n/2 and is

equivalent to sin−1
√
Y+a
n+2a for the variance transformation for B(n, p). But the former formula is simpler than the latter, so

in this paper we suggest (n+ 1
2 )
1/2 sin−1( 2Y−nn+2a )with approximate variance 1 instead of (n+

1
2 )
1/2 sin−1

√
2Y−n
n+2a .

It is well-known that π(λ) can be derived as the limit of B(n, p) as n approaches infinity and p approaches zero in such
a way that np = λ. Therefore, we study B(n, p) by numerical computation like π(λ). While n and p are fixed, the variance
transformed by (n+ 1

2 )
1/2 sin−1( 2Y−nn+2a ) is a monotone decreasing function of addend a also. See Fig. 2 and Table 3.

Freeman and Tukey (1950) suggested the combined transformation (n+ 12 )
1/2
[sin−1

√
Y
n+1+sin

−1
√
Y+1
n+1 for Y ∼ B(n, p).

Laubscher (1961) proposed the transformation n1/2 sin−1
√
Y
n +(n+1)

1/2 sin−1
√
Y+3/4
n+3/2 ]. Analogously, we can convert these

two transformations into (n+ 1
2 )
1/2
[sin−1( 2Y−n−1n+1 )+ sin−1( 2Y−n+1n+1 )] and [n1/2 sin−1( 2Y−nn )+ (n+ 1)1/2 sin−1( 2Y−nn+3/2 )]with

approximate variances 4.
Table 3 lists four better transformations (n + 1

2 )
1/2 sin−1( 2Y−nn+0.77 ), (n +

1
2 )
1/2 sin−1( 2Y−nn+0.75 ), (n +

1
2 )
1/2
[sin−1( 2Y−n−1n+1 ) +

sin−1( 2Y−n+1n+1 )] and [n1/2 sin−1( 2Y−nn )+(n+1)1/2 sin−1( 2Y−nn+3/2 )]with their numerical results, where parameter p is computed
to the fourth place of decimals when n = 1000.
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Fig. 3. Three transformed variance curves on NB(r, p) for r = 20 and p ∈ [0.1, 0.77].

Table 3
Some better variance stabilizing transformations on B(n, p).

a n npL ∆ ∆5 ∆4 ∆3 ∆2 ∆1 ∆0.5

0.385 20 4.08 .02122 .02122 .02149 .0129 .0546 .2700 .5250
0.385 50 4.60 .02103 .02103 .02337 .0181 .0754 .2819 .5334
0.385 100 4.80 .03877 .03877 .02418 .0200 .0789 .2859 .5362
0.385 1000 5.00 .03768 .03768 .02498 .0218 .0820 .2895 .5387

3/8 20 3.70 .02231 .02220 .02231 .0110 .0618 .2656 .5223
3/8 50 3.95 .02270 .02270 .02270 .0158 .0715 .2773 .5303
3/8 100 4.10 .02265 .02265 .02299 .0176 .0748 .2816 .5330
3/8 1000 4.20 .02253 .02253 .02368 .0193 .0779 .2847 .5354

(0, 1) 20 1.12 .0754 .02607 .0192 .0465 .0752 .1050 .3759
(0, 1) 50 1.20 .0709 .02822 .0224 .0484 .0709 .1130 .3835
(0, 1) 100 1.20 .0698 .02922 .0237 .0492 .0698 .1156 .3860
(0, 1) 1000 1.20 .0690 .0102 .0249 .0500 .0690 .1180 .3883

(0, 3/4) 20 0.98 .1122 .0146 .0337 .0702 .1108 .1122 .3883
(0, 3/4) 50 1.05 .1100 .0216 .0419 .0767 .1097 .1103 .3943
(0, 3/4) 100 1.10 .1086 .0235 .0440 .0781 .1086 .1129 .3963
(0, 3/4) 1000 1.10 .1074 .0251 .0457 .0790 .1074 .1153 .3982

4. Negative binomial distribution

Proposition 5. Let Y ∼ NB(r, p) and limr→+∞ r(1− p) = λ (positive constant); then

lim
r→+∞

(k+r−1r−1 )pr(1− p)k =
λk

k!
e−λ for all k ≥ 0. (3)

Proof. When n → +∞, n! ≈
√
2π nn+1/2e−n. Then (k+r−1r−1 )pr(1 − p)k ≈ (k+r−1)k+r−1/2e−k

(r−1)r−1/2
1
rk

pr (r(1−p))k

k! = (1 +
k
r−1 )

r−1/2 e−k (1+ k−1
r )

k (r(1−p))k

k! (1− r(1−p)
r )r ≈

(r(1−p))k

k! e−r(1−p) for large r . �

Remark. According to Proposition 5, NB(r, p) ≈ π(r(1 − p)) for large r . So there are transformations and geometrical
characteristics similar to those for transformed variance curves on NB(r, p), like π(λ) and B(n, p), if we just regard
q = (1− p) in NB(r, p) as p in B(n, p).

Fig. 3 shows that 0.385 is the best numerical value of a for transformation (r− 12 )
1/2 sinh−1

√
Y+a
r−2a on NB(r, p) for rq ≥ 5,

approximately. There are some cases for π(λ) and B(n, p) also.

Anscombe (1948) showed that on (r− 12 )
1/2 sinh−1

√
Y+a
r−2a the optimumvalue of a is 3/8when rq is larger and its variance

is equal to 14 + O((rq)
−2). Laubscher (1961) proposed the transformation r1/2 sinh−1

√
Y
r + (r − 1)

1/2 sinh−1
√
Y+3/4
n−3/2 .
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Table 4
Some better variance stabilizing transformations on NB(r, p).

a r rqL ∆ ∆5 ∆4 ∆3 ∆2 ∆1 ∆0.5

0.385 5 3.70 .03229 – .03229 .02567 .0596 .2914 .5569
0.385 10 4.45 .03408 .03397 .02166 .0143 .0732 .2923 .5491
0.385 20 4.86 .03456 .03456 .02330 .0184 .0783 .2915 .5443
0.385 100∗ 5.10 .03661 .03675 .02472 .0213 .0816 .2903 .5400

3/8 5 3.475 .03523 – .03477 .02461 .0563 .2864 .5529
3/8 10 3.92 .02127 .02121 .02127 .0122 .0693 .2871 .5451
3/8 20 4.10 .02149 .02149 .02223 .0160 .0742 .2863 .5405
3/8 100∗ 4.20 .02233 .02233 .02343 .0188 .0775 .2853 .5366

(0, 3/4) 5 1.075 .0782 – .02303 .0267 .0744 .1012 .3913
(0, 3/4) 10 1.06 .0920 .02722 .0214 .0536 .0912 .1093 .3958
(0, 3/4) 20 1.06 .0982 .0141 .0321 .0653 .0980 .1126 .3973
(0, 3/4) 100∗ 1.10 .1056 .0231 .0433 .0766 .1056 .1151 .3981
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Fig. 4. Five curves showing the skewness of Y ∼ π(λ) and the skewness transformed by four transformations for λ ∈ [0.5, 20].

Table 4 shows three better transformations: (r − 1
2 )
1/2 sinh−1

√
Y+0.385
r−0.77 , (r −

1
2 )
1/2 sinh−1

√
Y+3/8
r−3/4 and r

1/2 sinh−1
√
Y
r +

(r − 1)1/2 sinh−1
√
Y+3/4
r−3/2 . The third column expresses the left critical point of rq = r(1 − p), with corresponding relative

errors in the fourth column. The last six columnsdenote relative errors of transformedvariances for p ∈ [0.001, 1−k/r] (k =
5, 4, 3, 2, 1, 0.5) respectively, except for the case r = 100 (marked by ∗) with p ∈ [0.01, 1 − k/r] (k = 5, 4, 3, 2, 1, 0.5)
because of a calculated error problem.

5. Skewness, kurtosis and conclusions

Skewness is used as a measure of asymmetry of a random variable about its mean. Kurtosis can be used to detect that a
symmetric distribution departs from normality by being heavy-tailed or light-tailed or too peaked or too flat at the center.
Utilizing skewness and kurtosis, we study the normality of these transformations.
Let Y denote the random variable π(λ), or B(n, p), or NB(r, p). Let T (Y (a)) (a ∈ [0, 1]) denote the variance stabilizing

transformation
√
Y + a forπ(λ), or (n+ 12 )

1/2 sin−1( 2Y−nn+2a ) for B(n, p), or (r−
1
2 )
1/2 sinh−1

√
Y+a
r−2a forNB(r, p). Let T (Y (0, 1))

denote a combined transformation such as
√
Y+
√
Y + 1 forπ(λ), or (n+ 12 )

1/2
[sin−1( 2Y−n−1n+2 )+sin−1( 2Y−n+1n+2 )] for B(n, p),

or r1/2 sinh−1
√
Y
r + (r − 1)

1/2 sinh−1
√
Y+3/4
r−3/2 for NB(r, p).

By comparing the skewness and kurtosis for transformed and not transformed cases, we obtain some conclusions as
follows (see Figs. 4–9).

(1) T (Y (a)) obviously improves the skewness of primary data. Approximately, when λ ≥ 3 for π(λ), or np ∈ [3, n− 3] for
B(n, p), or rq ≥ 3 for NB(r, p), T (Y (a)) exchanges the skew direction and diminishes its size.

(2) T (Y (a)) improves the kurtosis of NB(r, p), especially while a ≥ 0.3. But it has no effect on π(λ) and B(n, p).
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Fig. 5. Five curves showing the kurtosis of Y ∼ π(λ) and the kurtosis transformed by four transformations for λ ∈ [0.5, 20].
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Fig. 6. Five curves showing the skewness of Y ∼ B(n, p) and the skewness transformed by four transformations for n = 50 and p ∈ [0.025, 0.975].
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Fig. 7. Five curves showing the kurtosis of Y ∼ B(n, p) and the kurtosis transformed by four transformations for n = 50 and p ∈ [0.025, 0.975].
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Fig. 9. Five curves showing the kurtosis of Y ∼ NB(n, p) and the kurtosis transformed by four transformations for r = 20 and p ∈ [0.1, 0.95].

(3) Combined transformation T (Y (0, 1)) behaves near T (Y (0.15)) and is not better than T (Y (0.385)) or T (Y (3/8)) for
normalizing random variables.

(4) Whenλ ≥ 10ornp ∈ [10, n−10]or rq ≥ 10, the skewness andkurtosis transformedby T (Y (a)) are almost independent
of a. When λ < 10 or np ∈ (0, 10)

⋃
(n− 10, n] or rq < 10, the larger a behaves better than the smaller.

In general, T (Y (0.385)) and T (Y (3/8)) are preferred variance stabilizing transformations for π(λ), B(n, p) and NB(r, p)
when their means are not less than 3, namely

√
Y + 0.385 and

√
Y + 0.375 for π(λ) and λ ≥ 3, (n + 1

2 )
1/2 sin−1( 2Y−nn+0.77 )

and (n + 1
2 )
1/2 sin−1( 2Y−nn+0.75 ) for B(n, p) and np ∈ [3, n − 3], and (r −

1
2 )
1/2 sinh−1

√
Y+0.385
r−0.77 and (r −

1
2 )
1/2
√
Y+0.385
r−0.75 for

NB(r, p) and nq ≥ 3. Here the corresponding relative errors of transformed variances are less than 2%. When their means
are not less than 5, then∆{Var (T (Y (0.385)))} is less than 0.1%.
If all themeans of the above three distributions are small enough (e.g.≤2) but larger than 0.5, combined transformations

are favorable. They are
√
Y +
√
Y + 1.3 and

√
Y +
√
Y + 1 for π(λ), (n+ 1

2 )
1/2
[sin−1( 2Y−n−1n+1 )+ sin−1( 2Y−n+1n+1 )] for B(n, p),

and r1/2 sinh−1
√
Y
r + (r− 1)

1/2 sinh−1
√
Y+3/4
r−3/2 for NB(r, p). When the means are not less than 1 (or 0.5), the relative errors

of the transformed variances are less than 12% (or 40%).
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