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1. Introduction

Let Y be a random variable with mean E(Y) = w and variance Var (Y). If the relationship between px and Var (Y)
was known, we could use this information to find a variance stabilizing transformation Z = T(Y) such that Var (Z) ~
C?(constant). T(Y) is expanded at the point Y =  into a Taylor series: T(Y) = T(u) + T’ () (Y — ) +o(Y — ). By solving
the differential equation T'(u) ~ CVar (Y)’”z, we obtain T(Y). In Proposition 1, we list some well-known transformations
(see Chatterjee et al. (2000) and Montgomery (2005)).

Proposition 1. (1) If Y ~ m (&) (Poisson distribution), T(Y) = v/Y with Var (+/Y) ~ 1.

(2) If Y ~ B(n, p) (binomial distribution), T(Y) = /nsin™" \/Y/n with Var (/nsin™' (/Y/n)) ~ ;.

(3)If Y ~ NB(r, p) (negative binomial distribution), its frequency function is P(Y = k) = (’r‘f.rl_l)p’(l —pkk =
0,1,2,...,r > 1), and then T(Y) = /r sinh™' \/Y/r with Var (/7 sinh™' /Y/r) ~ 1.

Bartlett (1936, 1947) first introduced variance stabilizing transformations, and proposed the transformation /Y + 0.5
for Y ~ m(A). Anscombe (1948) showed that /Y + 3/8 is the most nearly constant variance transformation for Y ~ (i)

when Y has a larger mean A, and sin™! Zﬁﬁ for Y ~ B(n, p) similarly. Freeman and Tukey (1950) suggested combined
transformations (v/Y + +/Y + 1) for Y ~ 7 (1) and (n 4+ )"/?[sin™" Vi +sin! /X2 for Y ~ B(n, p). The method

of combined transformation was generalized to NB(r, p) by Laubscher (1961). Thacker and Bromiley (2001) and Bromiley
and Thacker (2002) investigated the effects of stabilizing transformations on a Poisson distributed quantity and a binomial
distributed quantity. Uddin et al. (2006) presented a necessary condition for a variance stabilizing transformation to be an
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Fig. 1. Five transformed variance curves on r (A) for A € [0.5, 10] (left panel) and A € [10, 200] (right panel).

approximate symmetrizing transformation. For more general data, the Box-Cox transformation is often used (see Box and
Cox (1964), Box and Cox (1982) and Yamamura (1999)).

For Y ~ m()), Anscombe (1948) showed that Var (v/Y +a) = {1 + 32 + 0(A72)} ~ ; for large mean A and

any constant a > 0. On the other hand, it is clear that lim,_.q Var (/Y + a) = 0 for any constant a > 0. This implies
that /Y + a is only a local variance stabilizing transformation. There is the same case for binomial variables and negative
binomial variables. Our task is to find those transformations such that variances of transformed variables change less in
larger domains of dependence, i.e. domains of parameters.

Since exact formulas for transformed variances could not be obtained, numerical methods are applied to calculate these
variances of various transformed random variables. By virtue of mass numerical computation, we compare fluctuations
of these variances and obtain some better transformations with their domains of dependence. The selection criterion is
less fluctuation of variances with respect to a larger domain of dependence of parameters. In this paper, we will compute
parameters A, p and a to the third place of decimals.

In Section 2, we study transformation /Y + a and its combined transformations for Y ~ (1), and introduce three
concepts: left critical point, domain of dependence and relative error, to describe the stabilization of a transformation. In

—1,2Y—-n 1/2 1 Y+a
n+2a n+2a

Y ~ B(n, p). We also give the limit relation between NB(r, p) and 7 (1), and investigate three transformations for NB(r, p)
in Section 4. In the last section, the skewness and kurtosis of these three kinds of variables and variables transformed by
various transformations are computed and compared. Some better variance stabilizing transformations with domains of
dependence of parameters on (1), B(n, p), NB(r, p) are suggested.

Section 3, we show that a new kind of transformation (n + %)1/2 sin ) is equivalent to (n + %) sin™ for

2. Poisson distribution

Proposition 2. Let Y ~ 7 ()) and a; > a, > 0; then Var (/Y + ay) < Var (/Y + ap).

Proof. Let§ =a; —a, > Oandpy, = P(Y = k) = %e—* (k=0,1,2,....Wehave E[(J/Y +a)?] = A +a;(i=1,2),and

+o00 2 +o00 2
Var (/Y + a7) — Var (Y + ;) = § — [Z\/kjtm pk:| - [Z Vk+a pk}
k=0 k=0

+o0 Ix 2
<3—Zapﬁ—225pmpn:5—3<zpk> =0. (1)
k=0 k=0

m>n>0

Here, \/(m + a1)(n + a;) — /(M + ax)(n + az) > §, since [/ (m +a)(n+ a))* — [/(m+ ax)(n + az) + 81> = § (m +

a+n+a)—2/(m+a)(n+a) >0. O

Remark. Proposition 2 tells us that Var(+/Y + a) is a monotone decreasing function of a. Note that there is only one constant
a’ at most such that Var (/Y + @) = 0.25 for each .

By numerical computation, we obtain the following (see Fig. 1 and Table 1).
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Table 1

Variances under transformation by /Y + a.

a A Vi — 0.25 Am Vi — 0.25 M Viooo — 0.25 A

0 1.319 .1625 1000 .0°939 0.352 .0°939 .6496
0.100 2.086 .0468 1000 .0%688 0.898 .0%688 1871
0.200 2.786 .0203 1000 .0%438 1.450 .0%438 .0811
0.300 3.835 .0%651 1000 .0%188 2.347 .0*188 .0260
0.350 4769 .0%223 1000 .0°627 3237 .0°627 .0%889
0.375 5.624 .0°623 1000 .07162 4.206 .07162 .02251
0.380 5.890 03354 27.660 —.0%239 4.558 —.0°123 0%151
0.384 6.158 .0°148 16.751 —.0%745 4915 —.0°224 .0°890
0.385 6.237 .0%983 15.417 —.0%911 5.021 —.0°249 03757
0.386 6.321 .0%495 14.331 —.0%119 5.135 —.0°274 .0°634
0.387 6.413 .0°170 13.422 —.0%128 5.261 —.0°289 .0°520
0.500 1000 —.0%313 .0289 .0415 .0705 .1458 .3588
Table 2

Some better variance stabilizing transformations on 77 ().

a )\.]_ A AS A4 Ag Az A] Ag.s
0.385 5.021 .03189 03792 02731 .0220 .0823 .2899 5373
0.375 4.206 .0°623 02251 .0%376 .0194 .0782 2851 .5356
(0,1) 1.189 .0690 .0103 .0251 .0501 .0690 .1183 .3885
(0, 1.25) 1.328 .0464 .0267 .0267 .0332 .0464 .1190 3791
(0,1.3) 1.354 .0429 .0302 .0302 .0307 .0429 .1190 3772
(0,0.75) 1.027 .1072 .0252 .0459 .0791 .1072 1157 .3984
(0.01,1) 1.687 .0278 .02557 .0139 .0254 .0278 .1552 4174
(0.02, 1) 2.007 .0158 .02357 .0%928 .0156 .0161 1720 4307
(0,1,0.8) 0.973 1127 .0191 .0402 .0763 1121 1127 3844

(1) When a € [0, 0.375], there exists a special point Aq(a) such that Var (/Y (1) + a) is a monotone increasing function of
A € (0, Ag(a)] and a monotone decreasing function of A € (Ag(a), +00).

(2) When a € [0.376, 0.392] and the positive parameter A increases, Var (/Y (1) + a) at first shows monotone increase,
then monotone decrease, then monotone increase, and so on.

(3) When a > 0.393, Var (/Y (1) + a) is a monotone decreasing function of A € (0, +00).

According to the characteristic of Var (/Y (1) + a) curves, for a < 0.392 we introduce a concept ‘left critical point’ A,
which satisfies the following conditions:

(1) There exist both a maximum and a minimum of Var (/Y (}) + a) for A € (A, 1000], but no maximum and no minimum
of Var (4/Y(A) 4 a) for A € (0, Ap).
(2) Var (WY (Ay) +a) = Var (WY (Ay) +a) > Var (/Y (A, — 0.001) + a).
(3) Var WY(Am) + @) = min{Var (\/Y(A) +a)|]r € (Ar, 1000]}, Var (/Y (Ay) +a) = max{Var(VY(L) +a)|r €
(A, 10001}.
When A € [A[, 1000], the fluctuation of Var (/Y (X) + a) isless. When A € (0, A;) decreases, Var (/Y (1) + a) decreases
violently. Interval [A;, 1000] or [A;, +00) is called the ‘domain of dependence’ of parameter A.

In order to describe the fluctuation of variances precisely, we define the ‘relative error’ of the variance for parameter
0 € O as follows:

max {|Var (6;) — Var (6,)|}
01.62€6
A= . (2)
Var *
Here Var * is the limit value of Var (9) (6 € ©®). For w (1), B(n, p) and NB(r, p), by Proposition 1 their Var * are all 1/4.

In Table 1, V)y = Var+/Y(Ay) +a, V,, = Var/Y(Ap) +a, V5, = Var+/Y(A) + a. The last column denotes the relative
error A for A € [Ar, 1000]. The last row denotes the transformation /Y + 0.5; its variance is a monotone increasing function
of A > 0, and this means that /Y + 0.5 is not a better transformation. When A > 5, the left critical point of /Y + 0.385 is
the most proximal to 5, and thus /Y + 0.385 is almost the best variance stabilizing transformation of 77 (A) for A > 5. And

sois+/Y +3/8for A > 4.

Now we discuss the combined transformation
that the combined transformation 2 Fai+bavVia % Y +a might be seen as a compromise between /Y + a; and /Y + a,. For
example, ﬁ% vY*+1 improves the variance stabilization of /Y and v/Y + 1 extremely.

bi ¥ raithy /¥ Fay V”Z:Lﬁ; VY% (b, + by # 0). After much calculation, we are convinced
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Fig. 2. Five transformed variance curves on B(n, p) forn = 50 and p € [0.02, 0.5].

Table 2 lists some better transformations and combined transformations for a Poisson variable, where q, (a;, a;) and

(a1, az, b) respectively denote the transformations /Y + a, ¥ -412~+@ apd ¥ Y+a‘]++bbv Y+% and Ay represents the relative
error of the transformed variances A € [k, 1000] (k =5, 4, 3,2, 1,0.5).

3. Binomial distribution

Proposition 3. Let Y ~ B(n, p); then T(Y) = sin"(zyT_”) is a variance stabilizing transformation and Var (sin’](ZYT_")) ~
1/n.

Proof. We have & = 2{1 — (2=1)2}~1/2 = ﬁ{%(l — X)1}=1/2 Therefore Var (sin”' (2:-")) ~ 1/n. O

Proposition 4. Let Y ~ B(n, p), T (Y, a) = sin™" /XL Ty(Y, a) = sin""(252) and a € [0, 1]. Then:

(D Tin—Y,a)=n/2—-T1(Y,a), T,(n—Y,a) = —T,(Y, a);
(2) To(Y,a0) = 2Ty (Y, a) — 7 /2;
(3) Var (Ti(n — Y, a)) = Var (Ti(Y, a)) (i = 1, 2), Var (T,(Y, a)) = 4Var (T1(Y, a)).

Proof. (1) Considering sin*{sin~" (;55%)"/?} 4 sin*{sin ' (.4) 12} = 1, we have Ty(n — Y, @) = & — Ty(Y, a). Similarly,
Th,(n—Y,a) = -Ty(Y, a).

(2) Considering cos(2T;(Y, a)) = 1 — 2sin®(T;(Y, a)) = — sin(Tx(Y, a)), we have T»(Y, a) = 2T;(Y, a) — 7 /2.

(3) Byitems (1) and (2), the equalities of item (3) are easily obtained. O

2Y—n
n+2a

Remark. By Proposition 4, sin™'( ) is a negative symmetrical transformation with axis of symmetry Y = n/2 and is

equivalent to sin~! ::21 for the variance transformation for B(n, p). But the former formula is simpler than the latter, so
in this paper we suggest (n + 3)"/? sin”' (2.51) with approximate variance 1 instead of (n + 3)"/?sin™" /250,

It is well-known that 77 (A) can be derived as the limit of B(n, p) as n approaches infinity and p approaches zero in such
a way that np = A. Therefore, we study B(n, p) by numerical computation like 7z (1). While n and p are fixed, the variance

transformed by (n + 3)'/?sin™' (2:52) is a monotone decreasing function of addend a also. See Fig. 2 and Table 3.

Freeman and Tukey (1950) suggested the combined transformation (n+3)"/?[sin"" /Y5 +sin~" /X5 for Y ~ B(n, p).

Laubscher (1961) proposed the transformation n'/2 sin™" \/%—I— (n+1)"2sin7! ZEZ‘

two transformations into (n+ 5)"/2[sin~" (2=2=1) +sin~" (2=%E) ] and [n'/2 sin~ ' (21) + (n+ 1)'/? sin ™! nzi;/g)] with
approximate variances 4.

Table 3 lists four better transformations (n + 3)'/? sin™' (2545), (n + 5)/?sin™ ' (:22%), (n + 3)'2[sin ' (A1) +
sin”! (2=t Jand [n'/2 sin ™! (25=1) 4+ (n+1) /% sin~ ! (2557) ] with their numerical results, where parameter p is computed

n+3/2
to the fourth place of decimals when n = 1000.

]. Analogously, we can convert these
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Fig. 3. Three transformed variance curves on NB(r, p) forr =20andp € [0.1, 0.77].

Table 3

Some better variance stabilizing transformations on B(n, p).

a n npy A As Ay Az A A4 Aos
0.385 20 408 .0%122 .02122 .0%149 0129 .0546 2700 5250
0.385 50 4.60 .0%103 .0%103 .02337 0181 0754 2819 5334
0.385 100 4.80 .0°877 .0%877 02418 .0200 0789 2859 5362
0.385 1000 5.00 .0°768 .0%768 .02498 0218 10820 2895 5387
3/8 20 3.70 .0%231 .0%220 .0%231 0110 0618 2656 5223
3/8 50 3.95 .0%270 .0%270 .0%270 0158 0715 2773 5303
3/8 100 4.10 .0%265 .0%265 .0%299 0176 0748 2816 5330
3/8 1000 420 .0%253 .0%253 .0%368 0193 0779 2847 5354
(0,1) 20 1.12 0754 .02607 0192 .0465 0752 .1050 .3759
(0,1) 50 1.20 .0709 .0%2822 0224 0484 0709 .1130 .3835
(0,1) 100 1.20 .0698 .0%922 0237 0492 0698 1156 .3860
(0,1) 1000 1.20 .0690 0102 .0249 .0500 0690 .1180 .3883
(0, 3/4) 20 0.98 1122 0146 0337 0702 .1108 1122 .3883
(0, 3/4) 50 1.05 .1100 0216 0419 0767 .1097 .1103 .3943
(0,3/4) 100 1.10 .1086 0235 .0440 0781 .1086 1129 .3963
(0,3/4) 1000 1.10 .1074 0251 .0457 0790 .1074 .1153 .3982

4. Negative binomial distribution

Proposition 5. Let Y ~ NB(r, p) and lim,_, .o, (1 — p) = A (positive constant); then

)\k
lim T Hp'(1—pk="e* forall k=>o0. (3)

oo " k!
Proof. When n — 400, n! ~ /27 n"""/2e™" Then (*"/"")p"(1 — p)* ~ (k+r(_rl>f)+rr:11/;26_k 1 P’<r<11d—l’>)k = 1+

%)r—l/z e—k 1+ k_T])k (r(l};P))k (1- r(l;p) )r ~ (r(lap))k e—r(l—p) for large r. 0

Remark. According to Proposition 5, NB(r, p) ~ mw(r(1 — p)) for large r. So there are transformations and geometrical
characteristics similar to those for transformed variance curves on NB(r, p), like w(}) and B(n, p), if we just regard
q= (1—p)inNB(r,p) asp in B(n, p).

Fig. 3 shows that 0.385 is the best numerical value of a for transformation (r — %)1/2 sinh™! f_+2‘; on NB(r, p) forrq > 5,

approximately. There are some cases for 77 (1) and B(n, p) also.

Anscombe (1948) showed that on (r — %)1/2 sinh~!,/ ryfz"a the optimum value of a is 3/8 when rq is larger and its variance

is equal to 3 4 O((rq)~2). Laubscher (1961) proposed the transformation r'/? sinh ™' ﬁ + (r — 1)"?sinh™! ,/Xf—gg.
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Table 4
Some better variance stabilizing transformations on NB(r, p).
a r rqL A As Ay As Ay Aq Aos
0.385 5 3.70 .03229 - .03229 .0%567 .0596 2914 5569
0.385 10 4.45 .03408 .0%397 .0%166 0143 0732 2923 5491
0.385 20 4.86 .0%456 .0%456 .0%330 0184 .0783 2915 5443
0.385 100* 5.10 .0%661 .0%675 .0%472 0213 0816 2903 5400
3/8 5 3.475 .03523 = .03477 .0%461 0563 2864 5529
3/8 10 3.92 .02127 .0%121 02127 0122 .0693 2871 5451
3/8 20 4.10 .0%149 .0%149 .0%223 0160 0742 2863 5405
3/8 100* 420 .0%233 .0%233 .0%343 0188 0775 2853 5366
(0,3/4) 5 1.075 0782 = .0%2303 0267 0744 1012 .3913
(0,3/4) 10 1.06 0920 .0%722 0214 0536 0912 .1093 .3958
(0,3/4) 20 1.06 0982 .0141 0321 0653 .0980 1126 .3973
(0,3/4) 100* 1.10 .1056 0231 0433 0766 .1056 1151 .3981
1.5

Y

/

et
2
T

/ (Y+1)12
(Y+0.385)12

skewness

o
T

Y1/2+(Y+1 )1/2

Y12

0 2 4 6 8 10 12 14 16 18 20

Fig. 4. Five curves showing the skewness of Y ~ (1) and the skewness transformed by four transformations for A € [0.5, 20].

Table 4 shows three better transformations: (r — 3)"/?sinh ™" /X038 (- — 1)1/25inh~! % and r'/? sinh~! \/g—i—

(r — 1DY2sinh™"/ ’;f;’//: The third column expresses the left critical point of rg = r(1 — p), with corresponding relative

errors in the fourth column. The last six columns denote relative errors of transformed variances forp € [0.001, 1—k/r] (k =
5,4, 3,2, 1,0.5) respectively, except for the case r = 100 (marked by *) with p € [0.01, 1 — k/r] (k =5, 4,3,2,1,0.5)
because of a calculated error problem.

5. Skewness, kurtosis and conclusions

Skewness is used as a measure of asymmetry of a random variable about its mean. Kurtosis can be used to detect that a
symmetric distribution departs from normality by being heavy-tailed or light-tailed or too peaked or too flat at the center.
Utilizing skewness and kurtosis, we study the normality of these transformations.

Let Y denote the random variable 7 (1), or B(n, p), or NB(r, p).Let T(Y(a)) (a € [0, 1]) denote the variance stabilizing

transformation /Y + afor 7 (1), or (n+3)"/? sin™" (252) for B(n, p),or (r—3)"/?sinh ™" /£ for NB(r, p).LetT(Y (0, 1))

denote a combined transformation such as v/Y ++/Y + 1 for 7 (1), or (n+2)/[sin™" (B sin~ ! (2= for B(n, p),
orr'/2 sinh~! \/g + (r — 1)"/2 sinh™! ‘:f;//; for NB(r, p).

By comparing the skewness and kurtosis for transformed and not transformed cases, we obtain some conclusions as
follows (see Figs. 4-9).

(1) T(Y(a)) obviously improves the skewness of primary data. Approximately, when A > 3 for 7 (A1), ornp € [3, n — 3] for
B(n, p),orrq > 3 for NB(r, p), T(Y(a)) exchanges the skew direction and diminishes its size.
(2) T(Y(a)) improves the kurtosis of NB(r, p), especially while a > 0.3. But it has no effect on 77 (1) and B(n, p).
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Five curves showing the kurtosis of Y ~ B(n, p) and the kurtosis transformed by four transformations for n = 50 and p € [0.025, 0.975].
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Fig. 8. Five curves showing the skewness of Y ~ NB(r, p) and the skewness transformed by four transformations for r = 20 and p € [0.1, 0.95].
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Fig. 9. Five curves showing the kurtosis of Y ~ NB(n, p) and the kurtosis transformed by four transformations for r = 20 and p € [0.1, 0.95].

(3) Combined transformation T(Y (0, 1)) behaves near T(Y(0.15)) and is not better than T(Y (0.385)) or T(Y(3/8)) for
normalizing random variables.

(4) WhenA > 10ornp € [10, n—10] orrq > 10, the skewness and kurtosis transformed by T (Y (a)) are almost independent
of a. When A < 10 ornp € (0, 10) | J(n — 10, n] or rq < 10, the larger a behaves better than the smaller.

In general, T(Y(0.385)) and T(Y(3/8)) are preferred variance stabilizing transformations for v (1), B(n, p) and NB(r, p)

when their means are not less than 3, namely /Y +0.385 and +/Y +0.375 for 7 (1) and & > 3, (n + 3)"/?sin™ ' (;25)

and (n + 3)"2sin~" (;257%) for B(n, p) and np € [3, n — 3], and (r — 3)"/?sinh™! /X35 and (r — 5)/2, [XERIE for
NB(r, p) and nq > 3. Here the corresponding relative errors of transformed variances are less than 2%. When their means

are not less than 5, then A{Var (T(Y(0.385)))} is less than 0.1%.
If all the means of the above three distributions are small enough (e.g. <2) but larger than 0.5, combined transformations

are favorable. They are v/Y + /Y + 1.3and VY + /Y + 1 for 7 (1), (n+ 3)/?[sin~" (F=L) 4 sin~ ' (2D ] for B(n, p),
and r'/2 sinh™! \/g—i- (r—1)V2sinh~! /Y34 for NB(r, p). When the means are not less than 1 (or 0.5), the relative errors

r—3/2
of the transformed variances are less than 12% (or 40%).

Acknowledgement

This research was partially supported by the Open Fund for a Key-Key Silvicultural Discipline of Zhejiang Province Grant
200604.



G. Yu / Statistics and Probability Letters 79 (2009) 1621-1629 1629

References

Anscombe, F.J., 1948. The transformation of Poisson, binomial, negative binomial data. Biometrika 35, 246-254.

Bartlett, ML.S., 1936. The square root transformation in the analysis of variance. Supplement to the Journal of the Royal Statistical Society 3, 68-78.

Bartlett, M.S., 1947. The Use of Transformations. Biometrics 13, 39-52.

Box, G.E.P., Cox, D.R, 1964. An analysis of transformations. Journal of Royal Statistical Society, B 26, 211-243.

Box, G.E.P., Cox, D.R, 1982. An analysis of transformation Revisited. Journal of the American Statistical Association 77, 177-182.

Bromiley, P.A., Thacker, N.A., 2002. The effects of an arcsin square root transform on a binomial distributed quantity. Tina memo, 2002-007.

Chatterjee, S., Hadi, A.S., Price, B., 2000. Regression Analysis by Example, 3rd ed. Wiley and Son, Inc.

Freeman, M.F,, Tukey, ].W., 1950. Transformations related to the angular and the square root. The Annals of Mathematical Statistics 21, 607-611.

Laubscher, N.F.,, 1961. On stabilizing the binomial and negative binomial variances. Journal of the American Statistical Association 56, 143-150.

Montgomery, D.C., 2005. Design and Analysis of Experiment, 6th ed. Wiley and Son, Inc.

Thacker, N.A., Bromiley, P.A., 2001. The effects of a square root transform on a Poisson distributed quantity. Tina memo, 2001-010.

Uddin, M.T., Noor, M.S, Kabir, A, Ali, R., Islam, M.N., 2006. The transformations of Random variables under symmetry. Journal of Applied Sciences 6,
1818-1821.

Yamamura, K., 1999. Transformation using (x 4 0.5) to stabilize the variance of populations. Researches on Population Ecology 41, 229-234.



	Variance stabilizing transformations of Poisson, binomial and negative binomial distributions
	Introduction
	Poisson distribution
	Binomial distribution
	Negative binomial distribution
	Skewness, kurtosis and conclusions
	Acknowledgement
	References


