62 SUSAN JANE COLLEY [January

k(k — 1) and using the fact that b,, = 45, we obtain

1 k = 45/72

— + Z [k_ 22)%5;—1 =
2 5\ =1

In this case, each fraction in the sum, when reduced, has numerator divisible by 5,
so that 1 should also have this property. This provides a contradiction to the
assumption that k > 3.

It turns out that the role of unique factorization in @(y/—7) is not as critical as
the exposition here might indicate. Using the unique decomposition of ideals into
products of prime ideals in quadratic fields, one can apply the techniques above
generally to solve, for example, all Diophantine equations of the form X? + (49 —
1) = 44", where ¢ is an arbitrary prime. For more on this, see the more-detailed
paper of the author [4].

0. (14)
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The Tumbling Box

Susan JANE COLLEY
Department of Mathematics, Oberlin College, Oberlin, OH 44074

Introduction. Toss a rigid body, such as a book or an empty cereal box, in the air
three times, each time giving it a spin about one of its axes. It is perhaps surprising
to learn that the box will always rotate stably about two of its three axes, but will
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F1G. 1. Numerical plot of a box tumbling in air. The box is viewed from a distance of 5 box lengths
and along the direction of the fixed angular momentum vector L. In these “snapshots,” the unstable axis

#2 is misaligned from L by 5°. The principal moments of inertia of the box are in the ratio
Lol I3::6:4:3.

wobble and somersault unstably about the third (see Fig. 1). This fact is a
well-known result from classical mechanics (see [4] pp. 116ff. or [1] pp. 142-145),
but, unfortunately, one with which too few mathematicians seem to be familiar. The
tumbling box problem presents a very beautiful and natural example of a system of
nonlinear differential equations, one which can be made appropriate for an under-
graduate course in the subject, but one which fails to appear in any of the
elementary texts. In addition, it is one of those rare problems whose purely
mathematical solution is also easily verified empirically.

I would like to express my gratitude to Professor Alar Toomre of M.L.T. for
introducing me and countless others to this particular version of the problem (see,
for example, [2] problem 4.51, pp. 202ff.), for encouraging me to present it here, and
for allowing me to reproduce his splendid diagrams in Figs. 1 and 2.

Some Physics. The basic law of motion for any vector function of a rigid body in
space is Euler’s equation. If A(7) is any vector function pertaining to the body, the

formula states
dA’ dA S
—- =|— + @ XA, (1)
di space dt body
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where (dAﬂ/dt)space, (aEA_./dr)tm,y are the rates of change respectively measured in
fixed spatial coordinates and in coordinates relative to the principal axes of the
object, and where & is angular velocity (see, for instance, [3] p. 133). This formula
says essentially that dA/dt consists of both a translational and a rotational
component, the latter being given by & X A L
For our tumbling box, we are concerned with the case 4 = L, the angular

momentum. If we toss the box by giving it a spin as described in the introduction,
we are introducing a constant angular momentum vector. Hence (dL/dl),,cc = 0
and so (1) becomes
(df) LX& (2)

— = .

dt |poay

The Differential System. In the sequel, we assume that all coordinates are
measured relative to the axes of the box and henceforth we will drop the subscript
“body.” Then L = (Ijw,, [,w,, I;w;), where w; is the jth component of angular
velocity and /; the moment of inertia about the jth principal axis of the box. If we
assume that the box is uniform and has distinct dimensions (so that the box may
indeed be considered to look like a book), then we may take I, > I, > I; > 0. Then,
in coordinates, (2) becomes the system

J-Fq = (Iz = Is)"-’z“’ss
L,= (1’3 = Il)“l“’:h
L= (Il = Iz)“-’l"’z-

Equivalently, since w; = L;/I;, j = 1,2,3, we have

7 L )
I T e
| e (3)
L T
I : 1)LL
YUl L

It is easy to check that from (3) it follows that
LiLy+ Ly # Loly= 0. (4)
Integrating, we find
L+ L2+ L2=C.

Hence we see that the trajectories of (3) must all lie on spheres centered at the
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origin. For simplicity, let us consider only the case C' = 1. We have reduced our
problem to that of finding solutions on a single phase sphere.

Linearizations. Now we make a standard local analysis. It is not difficult to see
that (3) has six isolated critical points at (+1,0,0), (0, +£1,0), (0,0, £1). By using
Taylor’s formula for several variables near each critical point, we may approximate
(3) locally by the following six linear systems:

Ly =0,
: 1 1
near (+1,0,0) somb Vol I_3)L3’ (5a)
1 1
L3— i(I_g_ I—l)Lz,
; 1 1
Ly= & E‘ I_z L,
near (0, +1,0) Ly=0, (5b)
. 1 1
< i(f—z “R
. 1 1
L,= j:(j—3 = 1—2 L,,
near (0,0, +1) L= i(l - l L. (5¢)
L &L
Ly=

Since in each of (5a), (5b), and (5c¢) one of L,, L,, or L, is constant to first order,
we may regard each of these linear systems as being two-dimensional by “ignoring”
the constant variable. With such a simplification, the characteristic equation of (5a)
is x? — a = 0, where

a=(1/1,-1/L)1/I,—1/)) <0 (forI, > I,> L3).
Hence the corresponding eigenvalues are pure imaginary and thus the linear critical
points at (+1,0,0) are centers. Similarly, the characteristic equation of (5¢) is
x? — B =0, where

B= (/L —-1/L)(1/I;-1/1,) <0,

so at (0,0, +1) we also have centers. However, (5b) has characteristic equation
x> — y = 0, where

y= (/L - 1/L)(1/L; - 1/L,) > 0.
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Thus the eigenvalues of (5b) are real and of opposite sign and hence the critical

points at (0, +1,0) are saddle points (and are unstable).

Unfortunately, the local analysis above does not yet afford a complete solution
because of the centers resulting from (5a) and (5c). A center singularity is a
“borderline case” in that the original nonlinear system possibly could have a
singularity of a different type (see, for example, [2, p. 183]). However, analogously

to (4), we may check that from (3),

1,1 . I 1 .
25 Tk & == .1 -,
Jr2_"3 11_"3
I 1 . LI, .
i i) + ——L.L,=0.
T =L 242 I =1 343

(6a)

(6b)

FIG. 2. Trajectories of (%),,m_v = L X @ on the phase sphere L} + L3 + L3 = 1.
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These equations integrate respectively to

I,

I,
L? + L2 =1, 7
L.—I 1 Il—I32 1 (7a)

I3 I2
Lot o
1 3 1 2

L}=C,. (7b)

Equations (7a) and (7b) describe elliptical cylinders with axes the z and x axes,
respectively. For sufficiently small C; and C,, the intersections of these cylinders
with the phase sphere are closed curves about the z and x axes. Hence the centers
remain stable centers when we pass from the linearizations to the nonlinear system
(3). See Fig. 2 for a sketch of the trajectories on the phase sphere, along with arrows
indicating direction with increasing time. From this diagram, it is apparent that
rotations about either the longest or the shortest axis are non-asymptotically stable,
that rotations about the middle axis are unstable, and, furthermore, that this
unstable motion will tend to wobble around one of the two types of stable rotations.

Finally, we remark that if any two of the principal moments of inertia are equal,
then (3) immediately reduces to a simpler linear system which is easily seen to yield
only stable rotations.

F1G. 3. The tumbling tennis racquet. Rotations about axis 2 will exhibit Eulerian wobble.
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Note for Tennis Players. Essentially the same analysis as that employed above
can also be applied to the tossing of tennis racquets to verify the existence of stable
and unstable rotations (see Fig. 3). One finds that spinning the racquet about the
axis which is perpendicular to the neck and lies in the “plane” of the racquet results
in the Eulerian wobble described above. Tennis racquets provide excellent examples
of rigid bodies with distinct principal moments of inertia, since they have handles
which make them convenient to throw.
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The Multiplication Theorem for Fredholm Operators

DONALD SARASON
Department of Mathematics, University of California, Berkeley, CA 94720

A bounded linear operator 7" from one Banach space to another is called a
Fredholm operator if its kernel is of finite dimension and its range is of finite
codimension; one then defines ind(7"), the index of T, to be the difference between
the dimension of .the kernel of T and the codimension of the range of 7. A
Fredholm operator automatically has a closed range, a property that in many
treatments is incorporated as part of the definition. The resulting redundancy is not
a practical disadvantage, for, invariably, in checking in a concrete case that an
operator satisfies the requirements of the definition, when the range of the operator
is not obviously closed, one shows it is closed as part of the argument that shows it
has a finite codimension. Moreover, the instructor who uses the longer definition
can, without interrupting the logical flow of the lectures, assign to the students the
task of proving that the two definitions are equivalent. The proof is a satisfying
application of the open mapping theorem [8].

The theorem referred to in the title is one of the central results about Fredholm
operators. It states: If T is a Fredholm operator from X to Y and S is a Fredholm
operator from Y to Z, then ST is a Fredholm operator whose index is the sum of the
indices of S and T. The main point I wish to make here is that this theorem is a
purely algebraic result whose general case is easily reduced to the finite-dimensional
one, that case being an immediate consequence of the fundamental theorem of
linear algebra (which states: For a linear operator acting on a finite-dimensional
vector space, the dimensions of the kernel and the range add up to the dimension of the
space). 1 was prompted to write this note because the proofs of the multiplication
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