The telegraph equation’
The equation in terms of voltage V = V (¢, z):

L R,
(1) Vie = LCViy + | ReCo+ = | Vi + =V
Ry Ry

where

e [ is the self-inductance of the cable,
e (j is the capacitance of the insulator,
e R, is the resistance of the insulator,
e 7, is the resistance of the cable.

All are assumed to be constant throughout the length of the cable [that is, the cable is assumed to
be homogenous|. It so happens that L, Cy, and R, are measured in the corresponding units [Henry,
Farad, Ohm| per unit length, whereas Ry is measured in Ohm - meter. This becomes clear during
the derivation or simply by trying to reconcile the units in equation (1).

Derivation: an outline. Beside voltage V = V(¢,z) and current I = I(t,z) in the cable at
time ¢ and point z, there is also the leakage current j = j(t, z), per unit length of the cable so that

I(t,x + Ax) — I(t,2) ~ j(t,x) A,
that is,
(2) j(t,ﬂf) = _[x(tax)'

On the other hand, leakage is caused by the finite resistance and non-zero capacitance of the
insulator of the cable:
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Finally, we have the basic equation for the voltage drop according to the laws of Ohm and Faraday:

V(t,z) = V(t,z + Az) ~ <Rcl(t, )+ LI,(t, m)) Az,
that is,
(4) —Vi(t,z) = RI(t,x) + LI,(t, ).

Now, to get (1), we eliminate I and j: differentiate both sides of (4) with respect to z, substitute
j for —I, [from (2)] and then use (3) to write everything in terms of V.

As a quick concept check, confirm that, by eliminating j and V', you get an equivalent form of
(1) in terms of the current I:

L R,
1. = CyLl1 — +R.Cy | I, + ==1.
olidy + (Ro + o) ¢+ Ry

Equation (1) is considered on the half-line z > 0 with zero initial conditions V' (0, z) = V;(0,z) = 0,
and the boundary condition V'(¢,0) = f(¢) represents the signal being transmitted.

The ideal cable has not active leakage and no active resistance: Ry = 400, R, = 0, which turns
(1) into a wave equation

(5) Vit = Vag, >0, >0, V]eo = f(t),
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where ¢ = \/L;?o It is not the standard wave equation on the line [it is on the half line, with a

boundary condition], but it can be reduced to one using the method of reflection. The final answer
can be verified directly:

(6) V(t,x):{f(t_%)’ T <ct

0 T > ct.

In other words, the initial signal propagates to the right along the cable with speed ¢, so that you
are receiving exactly what was transmitted.

The wave equation (5) is an acceptable model for telegraph [above-the-ground] wires with ampli-
fiers along the way, as well as reasonably short underwater cables [was good enough for the 100km
long Great Britain-to-France cable|. For longer underwater cables, one can still ignore the active
leakage [Ry = 4o0] but can no longer ignore the active resistance of the cable. In fact, active
resistance becomes dominant in the sense that LCyV,; becomes much smaller than R.CyV;. As a
result, equation (5) becomes the heat equation

(7) Vi=aVi, t >0, >0, V=g = f(t),

ﬁ. The closed-form solution can be written using the method of reflection, but it is

not as nice as (6):

where a =

_ ' x —22/(4a(t—s))
V(t,x) /0 NI e f(s)ds.
This equality is highly non-trivial: note that you cannot even set = 0 on the right-hand side;
instead, a rather sophisticated computation shows that, if + — 0+, then, under some additional
assumptions about the function f, the right-hand side approaches f(t).

The bottom line: in a long underwater cable, the signal becomes “blurred” and a “point signal”
transmitted at the source 2 = 0 [think one dot or one dash of the Morse code] will be “going on”
for about z2/a seconds when received at (large) distance 4 from the source. Thus, the key to a
good underwater cable is large a, or, equivalently, small R.. It was Sir William Thomson, 1st Baron
Kelvin, who figured it all out, thus ensuring the resounding success of the [second] transatlantic
cable, getting rich, and [potentially] changing the course of the world history.



