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 The Historical Development of
 J. J. Sylvester's Four Point Problem

 RICHARD E. PFIEFER
 San Jose State University

 San Jose, CA 95192

 Historically, it would seem that the first question given on local probability, since Buffon,
 was the remarkable four-point problem of Prof. Sylvester.

 M. W. Crofton (1885) [6]

 1. The Early History In the Educational Times of 1864 [15], question 1491, J. J.
 Sylvester proposed what became known as his four point problem:

 Show that the chance of four points forming the apices of a reentrant
 quadrilateral is 1/4 if they be taken at random in an indefinite plane, but
 1/4 + e2 + x2, where e is a finite constant and x a variable quantity, if
 they be limited by an area of any magnitude and of any form.

 The limiting area mentioned above is understood to be a convex region [18].

 convex reentrant

 quadrilateral quadrilateral

 FIGURE 1.

 Since there are two questions stated, we first report the results on the probability,
 P, that four points taken at random in the plane form a reentrant quadrilateral. The
 readers of the Educational Times set to work on this problem and here is a list of
 some of the solvers and their published answers [9].

 SOLVER PROBABILITY, P

 Cayley and Sylvester 1/4
 G. C. DeMorgan 1/2
 J. M. Wilson 1/3
 C. M. Ingleby P< 1/2
 (Name Unknown) 3/8
 W. S. B. Woolhouse 35/127T2

 At the time, no one could detect whether any of the probabilities computed above
 was the solution, and J. J. Sylvester concluded "This problem does not admit of a
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 310 MATHEMATICS MAGAZINE

 determinate solution" [16].
 Cayley and Sylvester "solved" the problem by assuming that A, B, and C are the

 three points which form the largest triangle, then the fourth point D gives a reentrant
 quadrilateral only if it falls within the original triangle, AABC, out of the four
 equal-area triangles as shown in FIGURE 2. Cayley and Sylvester knew that this
 argument was insufficient in that it was possible, by an equally good argument, to
 obtain an inconsistent result [18].

 A

 FIGURE 2.

 In his solution to Question 1491, W. S. B. Woolhouse decided that he could assume
 that the four points were contained inside a circle, K, of radius r > 0, then compute
 the probability for four points inside K, and finally take the limit as r -> oc. In other
 words, he wanted to treat the plane as a circle of infinite radius. (See FIGURE 3.) He
 noted that:

 P( K) = Prob (reentrant quadrilateral)

 = 4 Prob (One point is inside the triangle formed by the other 3 points.)

 = 4 Mean (Expected) Triangle Area of 3 points/Area of K

 = 4 M(K)/A(K), where

 M(K) = 1/(A(K ))3ff f 1 X2 Y2 dy3dy2dyjdx3dx2dxj. (1)

 This formula defines M(K) for any closed, bounded convex plane region K. When K
 is a circle of radius r, A(K) = Tr2.

 FIGURE 3.
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 The computation of M(K), for K a circle of radius r, will be left to the interested

 reader with the hints: use Crofton's Formnla and polar coordinates. (See Solomon [14]
 for Crofton's Formula and some related computations.) After a few pages, you will
 obtain:

 M(K) = (1/(7Tr2)3)(35/48vT 2)(OTr2)4, and P(K) = 35/12 T2.

 Noting that P(K) is independent of the radius r, Woolhouse concluded that the
 solution to Question 1491 was 35/12g2.

 The culprit responsible for these inconsistent results is, of course, the phrase "at
 random in the plane." From this sample of two of the solutions, we see that each of
 the solvers above had used his own intuitive interpretation of the phrase and arrived
 at different answers. In subsequent issues of the Educational Times, there was a great
 deal of spirited discussion of what "at random in the plane" should mean. Crofton [5],
 in 1868, wrote about these differences of opinion and the discordant results in the

 four-point problem:

 this arises, not from any inherent ambiguity in the subject matter, but
 from the weakness of the instrument employed; our undisciplined
 conceptions of a novel subject requiring to be repeatedly and patiently
 reviewed, tested, and corrected by the light of experience and comparison,

 before they are purged from all latent error.

 The discussion, of course, would not be completely resolved until probability theory

 in terms of appropriate measures was developed in the following century. For a
 discussion of the necessity of such a measure in geometric probability see the
 monograph by Kendall and Moran [11, pp. 9-13].

 2. The Variational Four-Point Problem Now we concentrate on the computation of

 the probability, P(K), of the four points forming a re-entrant quadrilateral when they
 are taken at random inside a closed, bounded, convex plane region K. As previously
 shown, P(K) = 4M(K)/A(K) where M(K), defined by formula (1), is the mean (or
 expected) area of the triangle formed by three points taken at random in K and A(K)
 is the area of K.

 As noted above, Woolhouse obtained

 M(K) = (35/487T2)(7Tr2), and P(K) = 35/12 T2

 when K = D is a circular disk.

 Question No. 1229 from the Educational Times of 1865 [17] proposed by S. Watson
 and solved by J. J. Sylvester, was to show that M(K) = (1/12)A(K) when K is a
 triangle. It follows that P(K) = 1/3 when K = A is a triangle. By 1867, Woolhouse
 [19] had computed M(K) and P(K) for K a square, and K a regular hexagon. We
 summarize these values in TABLE 4.

 It should be noted that, if T is a non-singular affine transformation of the plane,
 then P(T(K)) = P(K). This explains why squares and parallelograms, or circles and

 TABLE 4

 Square or Regular Circle or
 K Triangle Parallelogram Hexagon Ellipse

 M(K) A(K)/12 llA(K)/144 289A(K)/3888 35A(K)/48&72
 P(K) 1/3 11/36 289/972 35/12 72
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 312 MATHEMATICS MAGAZINE

 ellipses have the same probability. Making the convention that A(K) = 1 will simplify
 TABLE 4, so we will adopt that convention and only allow area-preserving affine
 transformations T.

 Notice (from TABLE 4) that 1/3 > 11/36 > 289/972 > 35/127T2. J. J. Sylvester
 asked for the shape of the regions K that gave the maximum and minimum
 probabilities P(K) (see [6]), and the conjecture was:

 (i) P(D) < P(K), when D is bounded by a circle or an elipse;
 (ii) P(A) > P(K), when A is bounded by a triangle.

 The computational problem of finding P(K) and this new variational problem (or
 conjecture) are now collectively known as Sylvester's Four Point Problem [2, 3, 11, 12,
 13, 14].

 The first (not quite rigorous) proof of (i) was given by M. W. Crofton [6] in 1885.
 But it was not until 1917 that a complete proof of both (i) and (ii) was given by W.
 Blaschke [2]. Blaschke gave another proof in 1923 [3]. The two proofs given by
 Blaschke use the same geometric ideas so we will outline Blaschke's solution emphasiz-
 ing these ideas.

 3. The Geometry of Blaschke's Solution of Sylvester's Four Point Problem W.
 Blaschke actually proved the equivalent conjecture for the mean value M(K), namely:

 (i') M(D) < M(K), where D is bounded by a circle or an elipse;
 (ii') M(A) > M(K), where A is bounded by a triangle. And he showed that equality

 holds if and only if K is an ellipse in (i') or K is a triangle in (ii').
 To simplify the expression for M(K), we continue the convention that A(K) = 1.
 Blaschke's solution depends on the geometry of the multiple integral

 M(K) =bfbfbfP1fI$f 1 l x2 y2 dy3dY2dy,dx3dx2dxl,
 a a a a~ 2 V 1 3 y

 and, more specifically, the "inside" triple integral,

 I(X1X2, X3) = J |2 |f 3 JIAy, + BY2 + Cy3I dY3dY2 dy1.
 a1 a2 a3

 (See FIGURE 5.)

 Here A - (X3 - X2), B = (xI - X3), and C = (x2 - x). We may assume xl, x2, X3
 are distinct.

 Since we cannot sketch the surface given by the integrand f(Yl, Y2' Y3) =
 jAy1 + By2 + Cy31, let's look at the integral

 I- 1f #32fAy, + By21 dy2dyl,
 a1 a2

 as shown in FIGURE 6.

 Since the integral, I, represents the volume under the surface z = jAy1 + By21 and
 above the.rectangle R = [al, fll] x [a2, /B2], we can see from FIGURE 6 that the value
 of I is a strictly increasing function of the distance, d, of the center of R, (mi, m2) =

 (a1 + 3k1 a2 + 32)/2, from the hne Ay, + By2 =0 in the (Yl, Y2) plane. The corre-
 sponding fact holds for our integral I(x1, x2, X3).

This content downloaded from 
�������������154.59.124.74 on Sat, 09 Oct 2021 23:47:36 UTC������������� 

All use subject to https://about.jstor.org/terms



 VOL. 62, NO. 5, DECEMBER 1989 313

 In addition, the convexity of K forces the determinants

 1 X1 a1 1 x1 1
 I=1 X2 a2 and u=1 X2 /2

 1 X3 a3 1 X3 /3

 to have opposite signs. (Remember, xl, x2, X3 may be in any order.) This is illustrated
 in FIGURE 5.

 K

 I I

 I I I

 xI X2 x3

 FIGURE 5.

 z

 0Z ~ ~~~~~~~~ = Ay, + By2

 Y2

 Yi

 FIGURE 6.
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 314 MATHEMATICS MAGAZINE

 Using the formula for distance, d, from the center (ml, M2, M3) = (a, + I,
 a2 + ,B2, a3 + 133)/2 to the plane Ay, + By2 + Cy3 = 0, we have

 1 X1 a1 + 31 1 x1 1 1 X1 pi
 1 X2 a2 + /2 1 X2 a2 +1 X2 12

 Am1 + BM2 + CM3I 1 X3 a3 + 33 1 X3 a3 1 X3 /33

 A2 + B 2 + C2 2VA2+B2+ C2 2VA2+B2+ C2

 = 1 + u 1j2A+ B2 + C2.

 Note that d is a constant multiple of the area of the "midpoint triangle" with vertices

 (x1, m1), (X2, m2),(X3, M3).
 Now, if we allow the three intervals in FIGuRE 5 to vary vertically, subject to the

 constraint that 1 and u have opposite sign (or one or both are zero), we see that d
 attains its minimum value of zero when 1 = - u and d attains its maximum when

 l= 0 or u = 0. In other words, I(xl, x2, X3) attains the smallest value, call it
 I*(x1, X2, X3), if the three intervals in FIGURE 5 have their midpoints

 (x1, m1), (X2, m2), (X3, M3) on a line N. I(X1, X2, X3) attains its maximum value, call it
 I(X1, X2, X3), when the lower endpoints (x1, a1), (x2, a2), (X3, a3) lie on a line N (i.e.
 I = 0). See FIGURE 7, where we have used the x-axis for both lines N and N. We may

 always use the x-axis for the line N (or N) because of the invariance of I(x1, x2, X3)
 under transformations of the form T(x, y) = (x, y - (mx + b)).

 7bW

 7a.

 FIGURE 7.

 Since xl, x2, X3 was an arbitrary triple, centering all of the vertical line segments of
 K in a line will form a new set K*, (FIGuRE 7a) with the property M(K*) < M(K).
 Setting all of the vertical line segments on top of the x-axis will form a new set K,
 (FIGuRE 7b) with the property M(K) > M(K). These two operations, of forming K*
 and K from a given set K, are called the Steiner Symmetrization of K and the
 Schiittelung of K, respectively, in the line N, and are well-known in the geometry of
 convex sets [1, 4, 8]. It is easy to see that K, K*, and K all have the same area and it
 is not difficult to show that K* and K are convex whenever K is convex. It is also well
 known that there exists a sequence of Steiner Symmetrizations of K (respectively
 Schiuttelung operations of K) in a sequence of lines N1, N2,..., (resp. N1, N2,...,)
 which converges to a circle [4, 8] (respectively, triangle [1]). See FIGURE 8.
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 _ \~~~~~~~~, N<*.,

 K ~ ~ V < K**

 NV2\
 N2

 FIGURE 8.

 If we denote these sequences by Ko = K, K1 = K*, K2 =(K*)*, etc., and K= K,
 K 1 =K, K2 = (K), etc., and observe that M(K) is a continuous function of K, we see
 that { M(K )} is a decreasing sequence with limit M(D), where D is bounded by a
 circle, and { M(K')} is an increasing sequence with limit M(A), where A is bounded
 by a triangle. This completes the outline of the proof of (i') and (ii'). The equality
 conditions are established by observing that the first Symmetrization (resp.,
 Schiuttelung) of K can be made to strictly decrease (resp., increase) M(K) unless K is
 an ellipse (resp., triangle).

 4. The Generalization of Sylvester's Four Point Problem to Three Dimensions; an
 Unsolved Problem If we let K be a three dimensional, compact, convex set of
 volume 1, and define M(K) to be the mean (or expected) value of the volume of the
 tetrahedron formed by 4 points taken at random (uniform distribution) from K, the
 natural generalization of Sylvester's Four Point Problem would be the conjecture:

 (a) M(K) > M(D), where D is bounded by a sphere or an elipsoid; and equality
 holds if and only if K is a solid ellipsoid;

 (b) M(K) < M(A) where A is a solid tetrahedron, and equality holds if and only if
 K is a tetrahedron.

 Blaschke stated in 1917 [2] that both (a) and (b) were true, and that the proofs, as
 outlined in section 3, would carry over to higher dimensions. For (a), he was correct.
 This was verified by Groemer [7] in 1973. However, conjecture (b) is still unsolved!
 Why doesn't the proof of (ii') carry over to the three-dimensional problem? In two
 dimensions, the convexity of K forced the "lower" and "upper" determinants 1 and
 u to have opposite sign. For Blaschke's proof to work in three dimensions, the
 convexity of K must force the corresponding determinants

 1 xi Yi Oi 1 Xi /i /Pi
 1 X2 Y2 a2_ 1 x2 Y2 /2

 1= , and X 1 X3 Y3 13

 1 X4 Y a4 1 X4 Y4 /4

 to have opposite sign. But this is not the case! Referring to FIGURE 9, K is a
 tetrahedron and

 1 1 0 0 1 1 0 1

 1 0 1 1 1 0 1 2 4.
 1I 0 -a 1 1 0 1
 1 0 -1 1 1 0 -1 2
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 2

 -2 -/ 1 2

 2 2

 FIGURE 9.

 If we shifted the four intervals shown in FIGURE 9, using the Schiuttelung process,
 the corresponding function d would decrease to 0. (The verification of this is left to
 the reader.) For Blaschke's solution of (ii') to carry over to (b), d should increase! This
 indicates that the Schiittelung procedure may not be the correct procedure. (Perhaps
 (b) is not the correct generalization of (ii').) If you would care to work on this problem
 and/or a restatement of (b), please do.

 By the way, the thought may have occurred to the reader that perhaps a maximum
 does not exist. That is, maybe there is no set A of volume one such that M(K) < M(A)
 for all K. That would not be correct. Using the result of John [10], that every
 three-dimensional, compact, convex set of K of volume 1 is contained inside an
 ellipsoid of volume 33 = 27, it is (relatively) easy to show that such a maximum set
 exists. This, too, will be left to the reader.

 5. Concluding Remarks We have followed a single linear sequence of events in the
 development of Sylvester's Four Point Problem in order to arrive at the current status
 of only one of its offspring. There have been many other relatives along the way.
 There is a survey of results in the book by Santalo [13]. Solomon's book [14] gives
 related results and concentrates on some of the comiputations using Crofton's Theo-
 rem. For more historical remarks, the article by Klee [12] is recommended.
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 Proof without Words:
 Area and Difference Formulas

 a a  a sin x

 b ba sin :: b sin y

 XYb cos y a cos x
 sin(x - y) = sin x cos y - cos x sin y

 v s7/2-(x-y) y

 a b = bosy + aginx x

 acosx bsiny

 cos(x - y) = cos x cos y + sin x sin y

 -SIDNEY H. KUNG

 JACKSONVILLE UNIVERSITY
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