Summary of Probability
Foundations. Probability space is (2, F,P); € is the sample space (a set), F is the collection of
events (sub-sets of §2), P is the probability measure: a countably additive function from F to [0, 1];
P(Q) =1, P(@) =0.
Addition rule: P(A|JB) =P(A) +P(B) —P(A() B); extends to the inclusion-exclusion principle;
Multiplication rule: P(A( B) = P(A|B)P(B).

Random variables. A random variable X is a (measurable) function from €2 to R. The cdf of X is
Fx(xz) =P(X < x). A symmetric random variable has symmetric distribution: Fx(z) = 1—Fx(—z),
x > 0. Discrete random variable takes values in a countable set {z1,x9,...} and is characterized by
the probability mass function px (k) = P(X = x). A continuous random variable X has continuous
Fx and takes any particular value with probability zero: P(X = a) = 0 for all a € R. An absolutely
continuous random variable X is characterized by the pdf fx(x) so that P(a < X <b) = fab f(z)dz

Main discrete distributions.

(1) Uniform on {z1,...,z,}: p(k) =1/n

(2) Bernoulli(p) or B(1,p): p(1) =p, p(0)=1—-p

(3) Binomial(n,p) or B(n,p): p(k) = [n!/k!(n — k)!]p*(1 — p)"*

(4) Poisson(\) or P(A): p(k) = e *\F/k!

(5) Geometric(p) or G(p): p(k) = p(1 —p)*~ 1 k=1,2,...

(6) Negative Binomial(m,p) or NB(m,p):
p(k) = [(k = 1)1/ ((m = DIk = m))]p™ (1 = p)*~™, k=m,m+1,...

(7) Hypergeometric H(N,m,n) [N is the total population, m < N is the number of special
objects in the population, n < N is the sample size (without replacement)

Main continuous distributions.

(1) Uniform U(a,b): f(z)=1/(b—a),a <z <b

(2) Normal N (u,0?)

(3) Exponential £(\) = Gamma(1, \)

(4) Gamma(a, \): f(x) = cx®le ™% x>0

(5) Beta(a,B): f(z) = ca® (1 —z)P~1

(6) x2 = Gamma(n/2,1/2) = >"1_, X7, X}, iid N(0,1)
(7) tn = N(0,1)/[v/x3/n]

(8) Cauchy=t; = X/Y, X,Y iid standard normal; pdf is 1/[x(1 + 2?)]
(9) Finn = [Xin/m]/ x5 /7]

Characteristics of a random variable.

The expected value of a discrete random variable is

px =E(X) =) apx(k)
k

The expected value of a continuous random variable is
+oo

MX—E(X)—/ xf(z)dz.

—0o

Then Var(X) = 0% = E(X?) — p% is the variance of X, [E(X — ux)3]/o% is skewness, [E(X —
px)t/o% is kurtosis; ¢x(t) = Ee™X is the characteristic function of X and My (t) = Ee*¥ is the
moment-generating function of X; for n = 1,2,3,..., E(X") is called moment of order n (or n-th
moment); E(X — pux)™ is called central moment of order n. Note that ¢ x always exists, even when
px and higher-order moments do not exist.

The median of a random variable X is a point m such that P(X > m) > 1/2 and P(X <m) > 1/2;
this point does not have to be unique, but if it is unique (which is often, but not always, the case for
continuous distributions), then P(X > m) =P(X <m) =1/2.

For two random variables X,Y, Cov(X,Y) = E(XY) — uxuy is covariance and Cor(X,Y) =
px,y = Cov(X,Y)/[oxoy] is the correlation coefficient. If X and Y are independent, then Cov(X,Y) =

1



0, but not, in general, the other ways around [uncorrelated random variables can be dependent]. If
(X,Y) is bi-variate normal, then zero correlation implies independence.
Standartization of a random variable X is Z = X 5o that E(Z) = 0, Var(Z) = 1, and Z is

ox

dimensionless (has no units even when X has).
Location parameter p € R and scale parameter ¢ > 0 are alternative ways to quantify
standartization: if Z is a random variable with pdf fz = fz(z) and X = p+ 0Z, then the pdf fx

of X satisfies .
T —
fx(@) = _fz ( “) .

(o

The location and scale parameters are especially useful when px and/or ox are not defined.

More on skewness and kurtosis. Symmetric random variable has zero skewness; skewness is
positive when the distribution has a longer tail to the right (skewed to right); skewness is negative
when the distribution has a longer tail to the left (skewed to left).

For a unimodal random variable, the distribution function (pdf or probability mass function) has
a unique point of maximum, called the mode. Then

e Symmetric distribution has zero skewness and mode=median=mean;
e Skewed-to-right distribution has positive skewness and mode<median<mean;
o Skewed-to-left distribution has negative skewness and mode>median>mean.

Kurtosis is at least 1; it is exactly one for the symmetric Bernoulli distribution (fair coin tossing).
Standard normal distribution has kurtosis equal to 3. Distributions with kurtosis equal to 3 are
called mesokurtic. Platykurtic distribution has kurtosis<3 and, as a consequence, wider peak and
thinner (lighter) tails than the normal distribution. Leptokurtic distribution has kurtosis>3 and, as
a consequence, narrower peak and fatter (heavier) tails than the normal distribution.

Sums of iid random variables. X1,..., X, are iid as X means
P(X1 < a1,.., X < @) = [ [ Fx(an)
k=1

for all real numbers 1, ...,2,; Sp = X1 + ...+ X,; X, = S,/n is the sample mean. Here are the
main examples when the distribution of .S,, can be explicitly related to the distribution of X:

o If X is Bernoulli(p), then S, is Binomial(n, p).
o If X is Geometric(p), then S, is Negative Binomial(n, p).
e If X is Poisson(A), then S, is Poisson(n\).
e If X is Normal(y,0?), then S, is Normal(nu, na?).
Moreover, in this case [1/0%] Y r_, (X —X,,)? is independent of X,, and has x2_, distribution.
e If X is Gamma(a, A), then S,, is Gamma(na, A).
e If X is Cauchy, then so is S, /n.

Limit Theorems. If oy exists, then Var(X,,) = 0% /n, and we have
e LLN (Law of Large Numbers):

lim Xn = ux

n—oo
(in probability, with probability one, and in L);
e CLT (Central Limit Theorem):

lim P (M < x) — lim P <(S” —nix) :g> — &(z),

n—oo ox n—o0 \/EO'X

where @ is the cdf of the standard normal distribution;
e LIL (Law of Iterated Logarithm):

. Vi(X, — px) . Sp — nux
( 17rzn—>solcl>p ox+/21n(In(n)) 17211_)sol<1>p nox+/21In(In(n))

where limsup,, . a, = lim;, o SUPy>,, Qk.




. In the special case X is Bernoulli: P(X = 1) = p, P(X = 0) = 1 — p, so that ux = p,
0% = p(1—p), and S, is Binomial(n, p), we also have the Local Limit Theorem (LLT), which
gives an approximation by the normal pdf as opposed to cdf:

n! E(1 = pynt < (k — np)? )
k!(n—k)!p b \/277\/np (1—p 2np(1 —p) )’
this is equivalent to the Stirling formula n! ~ v/ 27Tn(n/ e)”.
e Other special limit theorems: H(N, m,n) ~ B(n,m/N) for large N, m and fixed n; B(n,p) ~
P(np) for large n and small p; P(\) =~ N (A, \) for large A.

Conditional expectation. Assuming oy is finite, g(Y') = E(X|Y) is the function of Y such that
¢(Y) minimizes E(X — f(Y'))? among all possible functions f; Eg(Y) = E(X) = px, E((f(Y)X]Y) =
FY)E(X]Y). If X and Y are independent, then E(X|Y) = pux. Conditional variance is

Var(X|Y) = E((X - IE(X\Y))Q]Y); Var(X) = Var(E(X|Y)) + EVar(X[|Y).

Bi-variate Gaussian distribution. [(X,Y) is bi-variate Gaussian] <> [aX + bY" is Gaussian for
every real a,b]. In this case, E(X|Y) = ux + px,y(ox/oy)(Y — py) (normal correlation theorem).

Inequalities.

(1) Markov: if X > 0, then P(X > ¢) < [EX]/c.

(2) Chebyshev: P(|X — px| > ¢) < [Var(X)]/c2.

(3) Jensen: if f = f(x) is convex (f"(x) > 0), then Ef (X) > f(ux). For example, Mx (t) > ex.
(4) Cauchy-Schwartz: |[E(XY)| < VEX?2VEY?2.

(5) Holder: [E(XY)| < (B|X[P)"? (B[Y]2)"%, (1/p) + (1/q) = 1.

(6) L

6) Lyapunov: if p > g, then (E|X|?) Yr > (E|X| )1/q-

Types of convergence for random variables. The sequence of random variables &,,n > 1,
converges to random variable &, as n — oo
(1) With probability one, if P(lim,, o0 & = &) = 1;
(2) In probability, if, for every ¢ > 0, limy, o0 P(|&, — &| > ) = 0;
(3) In distribution, if lim, o Fg, () = F¢(x) for all + where F¢ is continuous. Equivalently,
limy, 00 ¢, () = pe(t) for all .
(4) In Ly, p > 0, if lim,,_,oc E[&, — &P = 0.
“With probability one” implies “In probability”, and “In probability” implies “In distribution”.
“In L,” implies “In probability”. If the limit £ is constant (non-random), then “In distribution”
implies “In probability”.



