Summary of Probability

Foundations. Probability space is $(\Omega, \mathcal{F}, \mathbb{P})$; Ω is the sample space (a set), \mathcal{F} is the collection of events (sub-sets of Ω), \mathbb{P} is the probability measure: a countably additive function from \mathcal{F} to [0,1]; $\mathbb{P}(\Omega) = 1, \ \mathbb{P}(\emptyset) = 0.$

Addition rule: $\mathbb{P}(A \mid B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$; extends to the inclusion-exclusion principle; Multiplication rule: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$.

Random variables. A random variable X is a (measurable) function from Ω to \mathbb{R} . The cdf of X is $F_X(x) = \mathbb{P}(X \le x)$. A symmetric random variable has symmetric distribution: $F_X(x) = 1 - F_X(-x)$, $x \ge 0$. Discrete random variable takes values in a countable set $\{x_1, x_2, \ldots\}$ and is characterized by the probability mass function $p_X(k) = \mathbb{P}(X = x_k)$. A continuous random variable X has continuous F_X and takes any particular value with probability zero: $\mathbb{P}(X = a) = 0$ for all $a \in \mathbb{R}$. An absolutely continuous random variable X is characterized by the pdf $f_X(x)$ so that $\mathbb{P}(a < X < b) = \int_a^b f(x) dx$. Main discrete distributions.

- (1) Uniform on $\{x_1, ..., x_n\}$: p(k) = 1/n
- (2) Bernoulli(p) or $\mathcal{B}(1,p)$: p(1) = p, p(0) = 1 p
- (3) Binomial(n, p) or $\mathcal{B}(n, p)$: $p(k) = [n!/k!(n-k)!]p^k(1-p)^{n-k}$
- (4) Poisson(λ) or $\mathcal{P}(\lambda)$: $p(k) = e^{-\lambda} \lambda^k / k!$
- (5) Geometric(p) or G(p): $p(k) = p(1-p)^{k-1}, k = 1, 2, ...$
- (6) Negative Binomial(m, p) or NB(m, p):

 $p(k) = [(k-1)!/((m-1)!(k-m)!)]p^m(1-p)^{k-m}, \ k = m, m+1, \dots$

(7) Hypergeometric $\mathcal{H}(N,m,n)$ [N is the total population, m < N is the number of special objects in the population, n < N is the sample size (without replacement)

Main continuous distributions.

- (1) Uniform U(a, b): f(x) = 1/(b-a), a < x < b
- (2) Normal $\mathcal{N}(\mu, \sigma^2)$
- (3) Exponential $\mathcal{E}(\lambda) = \text{Gamma}(1, \lambda)$
- (4) Gamma(α, λ): $f(x) = cx^{\alpha-1}e^{-\lambda x}, x > 0$
- (5) Beta (α, β) : $f(x) = cx^{\alpha-1}(1-x)^{\beta-1}$
- (6) $\chi_n^2 = \text{Gamma}(n/2, 1/2) = \sum_{k=1}^n X_k^2, X_k \text{ iid } \mathcal{N}(0, 1)$
- (7) $t_n = \mathcal{N}(0,1) / [\sqrt{\chi_n^2/n}]$
- (8) Cauchy= $t_1 = X/Y$, X, Y iid standard normal; pdf is $1/[\pi(1+x^2)]$ (9) $F_{m,n} = [\chi_m^2/m]/[\chi_n^2/n]$

Characteristics of a random variable.

The expected value of a discrete random variable is

$$\mu_X = \mathbb{E}(X) = \sum_k x_k p_X(k).$$

The expected value of a continuous random variable is

$$\mu_X = \mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Then $\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}(X^2) - \mu_X^2$ is the variance of X, $[\mathbb{E}(X - \mu_X)^3]/\sigma_X^3$ is skewness, $[\mathbb{E}(X - \mu_X)^4]/\sigma_X^4$ is kurtosis; $\varphi_X(t) = \mathbb{E}e^{itX}$ is the characteristic function of X and $M_X(t) = \mathbb{E}e^{tX}$ is the moment-generating function of X; for $n = 1, 2, 3, ..., \mathbb{E}(X^n)$ is called moment of order n (or n-th moment); $\mathbb{E}(X - \mu_X)^n$ is called central moment of order n. Note that φ_X always exists, even when μ_X and higher-order moments do not exist.

The median of a random variable X is a point \mathfrak{m} such that $\mathbb{P}(X \ge \mathfrak{m}) \ge 1/2$ and $\mathbb{P}(X \le \mathfrak{m}) \ge 1/2$; this point does not have to be unique, but if it is unique (which is often, but not always, the case for continuous distributions), then $\mathbb{P}(X \ge \mathfrak{m}) = \mathbb{P}(X \le \mathfrak{m}) = 1/2$.

For two random variables X, Y, $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mu_X \mu_Y$ is covariance and $\operatorname{Cor}(X,Y) =$ $\rho_{X,Y} = \operatorname{Cov}(X,Y)/[\sigma_X \sigma_Y]$ is the correlation coefficient. If X and Y are independent, then $\operatorname{Cov}(X,Y) =$ 0, but not, in general, the other ways around [uncorrelated random variables can be dependent]. If

(X, Y) is bi-variate normal, then zero correlation implies independence. Standartization of a random variable X is $Z = \frac{X - \mu_X}{\sigma_X}$, so that $\mathbb{E}(Z) = 0$, $\operatorname{Var}(Z) = 1$, and Z is dimensionless (has no units even when X has).

Location parameter $\mu \in \mathbb{R}$ and scale parameter $\sigma > 0$ are alternative ways to quantify standartization: if Z is a random variable with pdf $f_Z = f_Z(x)$ and $X = \mu + \sigma Z$, then the pdf f_X of X satisfies

$$f_X(x) = \frac{1}{\sigma} f_Z\left(\frac{x-\mu}{\sigma}\right)$$

The location and scale parameters are especially useful when μ_X and/or σ_X are not defined.

More on skewness and kurtosis. Symmetric random variable has zero skewness; skewness is positive when the distribution has a longer tail to the right (skewed to right); skewness is negative when the distribution has a longer tail to the left (skewed to left).

For a unimodal random variable, the distribution function (pdf or probability mass function) has a unique point of maximum, called the mode. Then

- Symmetric distribution has zero skewness and mode=median=mean;
- Skewed-to-right distribution has positive skewness and mode<median<mean;
- Skewed-to-left distribution has negative skewness and mode>median>mean.

Kurtosis is at least 1; it is exactly one for the symmetric Bernoulli distribution (fair coin tossing). Standard normal distribution has kurtosis equal to 3. Distributions with kurtosis equal to 3 are called mesokurtic. Platykurtic distribution has kurtosis<3 and, as a consequence, wider peak and thinner (lighter) tails than the normal distribution. Leptokurtic distribution has kurtosis>3 and, as a consequence, narrower peak and fatter (heavier) tails than the normal distribution.

Sums of iid random variables. X_1, \ldots, X_n are iid as X means

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{k=1}^n F_X(x_k)$$

for all real numbers x_1, \ldots, x_n ; $S_n = X_1 + \ldots + X_n$; $\overline{X}_n = S_n/n$ is the sample mean. Here are the main examples when the distribution of S_n can be explicitly related to the distribution of X:

- If X is Bernoulli(p), then S_n is Binomial(n, p).
- If X is Geometric(p), then S_n is Negative Binomial(n, p).
- If X is $Poisson(\lambda)$, then S_n is $Poisson(n\lambda)$.
- If X is Normal(μ, σ²), then S_n is Normal(nμ, nσ²). Moreover, in this case [1/σ²] Σⁿ_{k=1}(X_k-X̄_n)² is independent of X̄_n and has χ²_{n-1} distribution.
 If X is Gamma(α, λ), then S_n is Gamma(nα, λ).
- If X is Cauchy, then so is S_n/n .

Limit Theorems. If σ_X exists, then $\operatorname{Var}(\bar{X}_n) = \sigma_X^2/n$, and we have

• LLN (Law of Large Numbers):

$$\lim_{n \to \infty} \bar{X}_n = \mu_X$$

(in probability, with probability one, and in L_1);

• CLT (Central Limit Theorem):

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\sqrt{n}(\bar{X}_n - \mu_X)}{\sigma_X} \le x\right) = \lim_{n \to \infty} \mathbb{P}\left(\frac{(S_n - n\mu_X)}{\sqrt{n}\sigma_X} \le x\right) = \Phi(x),$$

where Φ is the cdf of the standard normal distribution;

• LIL (Law of Iterated Logarithm):

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{\sqrt{n}(\bar{X}_n - \mu_X)}{\sigma_X \sqrt{2\ln(\ln(n))}} = 1\right) = \mathbb{P}\left(\limsup_{n \to \infty} \frac{S_n - n\mu_X}{\sqrt{n}\sigma_X \sqrt{2\ln(\ln(n))}} = 1\right) = 1,$$

where $\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \ge n} a_k$.

• In the special case X is Bernoulli: $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 - p$, so that $\mu_X = p$, $\sigma_X^2 = p(1-p)$, and S_n is Binomial(n, p), we also have the Local Limit Theorem (LLT), which gives an approximation by the normal pdf as opposed to cdf:

$$\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k} \approx \frac{1}{\sqrt{2\pi}\sqrt{np(1-p)}} \exp\left(-\frac{(k-np)^2}{2np(1-p)}\right);$$

this is equivalent to the Stirling formula $n! \approx \sqrt{2\pi n} (n/e)^n$.

• Other special limit theorems: $\mathcal{H}(N, m, n) \approx \mathcal{B}(n, m/N)$ for large N, m and fixed n; $\mathcal{B}(n, p) \approx$ $\mathcal{P}(np)$ for large n and small $p; \mathcal{P}(\lambda) \approx \mathcal{N}(\lambda, \lambda)$ for large λ .

Conditional expectation. Assuming σ_X is finite, $g(Y) = \mathbb{E}(X|Y)$ is the function of Y such that g(Y) minimizes $\mathbb{E}(X - f(Y))^2$ among all possible functions f; $\mathbb{E}g(Y) = \mathbb{E}(X) = \mu_X$, $\mathbb{E}((f(Y)X|Y) = f(Y))^2$ $f(Y)\mathbb{E}(X|Y)$. If X and Y are independent, then $\mathbb{E}(X|Y) = \mu_X$. Conditional variance is

$$\operatorname{Var}(X|Y) = \mathbb{E}\Big(\Big(X - \mathbb{E}(X|Y)\Big)^2|Y\Big); \quad \operatorname{Var}(X) = \operatorname{Var}\big(\mathbb{E}(X|Y)\big) + \mathbb{E}\operatorname{Var}(X|Y).$$

Bi-variate Gaussian distribution. [(X, Y) is bi-variate Gaussian] $\leftrightarrow [aX + bY]$ is Gaussian for every real a, b]. In this case, $\mathbb{E}(X|Y) = \mu_X + \rho_{X,Y}(\sigma_X/\sigma_Y)(Y-\mu_Y)$ (normal correlation theorem).

Inequalities.

- (1) Markov: if X > 0, then $\mathbb{P}(X > c) < [\mathbb{E}X]/c$.
- (2) Chebyshev: $\mathbb{P}(|X \mu_X| > c) \leq [\operatorname{Var}(X)]/c^2$.
- (3) Jensen: if f = f(x) is convex $(f''(x) \ge 0)$, then $\mathbb{E}f(X) \ge f(\mu_X)$. For example, $M_X(t) \ge e^{t\mu_X}$.
- (4) Cauchy-Schwartz: $|\mathbb{E}(XY)| \leq \sqrt{\mathbb{E}X^2}\sqrt{\mathbb{E}Y^2}$. (5) Hölder: $|\mathbb{E}(XY)| \leq (\mathbb{E}|X|^p)^{1/p} (\mathbb{E}|Y|^q)^{1/q}$, (1/p) + (1/q) = 1. (6) Lyapunov: if p > q, then $(\mathbb{E}|X|^p)^{1/p} \geq (\mathbb{E}|X|^q)^{1/q}$.

Types of convergence for random variables. The sequence of random variables $\xi_n, n \ge 1$, converges to random variable ξ , as $n \to \infty$

- (1) With probability one, if $\mathbb{P}(\lim_{n\to\infty} \xi_n = \xi) = 1$;
- (2) In probability, if, for every $\varepsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(|\xi_n \xi| > \varepsilon) = 0$;
- (3) In distribution, if $\lim_{n\to\infty} F_{\xi_n}(x) = F_{\xi}(x)$ for all x where F_{ξ} is continuous. Equivalently, $\lim_{n\to\infty}\varphi_{\xi_n}(t) = \varphi_{\xi}(t) \text{ for all } t.$
- (4) In L_p , p > 0, if $\lim_{n \to \infty} \mathbb{E} |\xi_n \xi|^p = 0$.

"With probability one" implies "In probability", and "In probability" implies "In distribution". "In L_p " implies "In probability". If the limit ξ is constant (non-random), then "In distribution" implies "In probability".