
Summary of Probability
Foundations. Probability space is (Ω,F ,P); Ω is the sample space (a set), F is the collection of

events (sub-sets of Ω), P is the probability measure: a countably additive function from F to [0, 1];
P(Ω) = 1, P(∅) = 0.

Addition rule: P(A
∪
B) = P(A) + P(B)− P(A

∩
B); extends to the inclusion-exclusion principle;

Multiplication rule: P(A
∩
B) = P(A|B)P(B).

Random variables. A random variableX is a (measurable) function from Ω to R. The cdf ofX is
FX(x) = P(X ≤ x). A symmetric random variable has symmetric distribution: FX(x) = 1−FX(−x),
x ≥ 0. Discrete random variable takes values in a countable set {x1, x2, . . .} and is characterized by
the probability mass function pX(k) = P(X = xk). A continuous random variable X has continuous
FX and takes any particular value with probability zero: P(X = a) = 0 for all a ∈ R. An absolutely

continuous random variable X is characterized by the pdf fX(x) so that P(a < X < b) =
∫ b
a f(x)dx.

Main discrete distributions.

(1) Uniform on {x1, . . . , xn}: p(k) = 1/n
(2) Bernoulli(p) or B(1, p): p(1) = p, p(0) = 1− p
(3) Binomial(n, p) or B(n, p): p(k) = [n!/k!(n− k)!]pk(1− p)n−k

(4) Poisson(λ) or P(λ): p(k) = e−λλk/k!
(5) Geometric(p) or G(p): p(k) = p(1− p)k−1, k = 1, 2, . . .
(6) Negative Binomial(m, p) or NB(m, p):

p(k) = [(k − 1)!/((m− 1)!(k −m)!)]pm(1− p)k−m, k = m,m+ 1, . . .
(7) Hypergeometric H(N,m, n) [N is the total population, m < N is the number of special

objects in the population, n < N is the sample size (without replacement)

Main continuous distributions.

(1) Uniform U(a, b): f(x) = 1/(b− a), a < x < b
(2) Normal N (µ, σ2)
(3) Exponential E(λ) = Gamma(1, λ)
(4) Gamma(α, λ): f(x) = cxα−1e−λx, x > 0
(5) Beta(α, β): f(x) = cxα−1(1− x)β−1

(6) χ2
n = Gamma(n/2, 1/2) =

∑n
k=1X

2
k , Xk iid N (0, 1)

(7) tn = N (0, 1)/[
√

χ2
n/n]

(8) Cauchy= t1 = X/Y , X,Y iid standard normal; pdf is 1/[π(1 + x2)]
(9) Fm,n = [χ2

m/m]/[χ2
n/n]

Characteristics of a random variable.
The expected value of a discrete random variable is

µX = E(X) =
∑
k

xkpX(k).

The expected value of a continuous random variable is

µX = E(X) =

∫ +∞

−∞
xf(x)dx.

Then Var(X) = σ2
X = E(X2) − µ2

X is the variance of X, [E(X − µX)3]/σ3
X is skewness, [E(X −

µX)4]/σ4
X is kurtosis; φX(t) = EeitX is the characteristic function of X and MX(t) = EetX is the

moment-generating function of X; for n = 1, 2, 3, . . . , E(Xn) is called moment of order n (or n-th
moment); E(X − µX)n is called central moment of order n. Note that φX always exists, even when
µX and higher-order moments do not exist.

The median of a random variable X is a point m such that P(X ≥ m) ≥ 1/2 and P(X ≤ m) ≥ 1/2;
this point does not have to be unique, but if it is unique (which is often, but not always, the case for
continuous distributions), then P(X ≥ m) = P(X ≤ m) = 1/2.

For two random variables X,Y , Cov(X,Y ) = E(XY ) − µXµY is covariance and Cor(X,Y ) =
ρX,Y = Cov(X,Y )/[σXσY ] is the correlation coefficient. IfX and Y are independent, then Cov(X,Y ) =

1



0, but not, in general, the other ways around [uncorrelated random variables can be dependent]. If
(X,Y ) is bi-variate normal, then zero correlation implies independence.

Standartization of a random variable X is Z = X−µX
σX

, so that E(Z) = 0, Var(Z) = 1, and Z is

dimensionless (has no units even when X has).
Location parameter µ ∈ R and scale parameter σ > 0 are alternative ways to quantify

standartization: if Z is a random variable with pdf fZ = fZ(x) and X = µ + σZ, then the pdf fX
of X satisfies

fX(x) =
1

σ
fZ

(
x− µ

σ

)
.

The location and scale parameters are especially useful when µX and/or σX are not defined.
More on skewness and kurtosis. Symmetric random variable has zero skewness; skewness is

positive when the distribution has a longer tail to the right (skewed to right); skewness is negative
when the distribution has a longer tail to the left (skewed to left).

For a unimodal random variable, the distribution function (pdf or probability mass function) has
a unique point of maximum, called the mode. Then

• Symmetric distribution has zero skewness and mode=median=mean;
• Skewed-to-right distribution has positive skewness and mode<median<mean;
• Skewed-to-left distribution has negative skewness and mode>median>mean.

Kurtosis is at least 1; it is exactly one for the symmetric Bernoulli distribution (fair coin tossing).
Standard normal distribution has kurtosis equal to 3. Distributions with kurtosis equal to 3 are
called mesokurtic. Platykurtic distribution has kurtosis<3 and, as a consequence, wider peak and
thinner (lighter) tails than the normal distribution. Leptokurtic distribution has kurtosis>3 and, as
a consequence, narrower peak and fatter (heavier) tails than the normal distribution.

Sums of iid random variables. X1, . . . , Xn are iid as X means

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

k=1

FX(xk)

for all real numbers x1, . . . , xn; Sn = X1 + . . . +Xn; X̄n = Sn/n is the sample mean. Here are the
main examples when the distribution of Sn can be explicitly related to the distribution of X:

• If X is Bernoulli(p), then Sn is Binomial(n, p).
• If X is Geometric(p), then Sn is Negative Binomial(n, p).
• If X is Poisson(λ), then Sn is Poisson(nλ).
• If X is Normal(µ, σ2), then Sn is Normal(nµ, nσ2).
Moreover, in this case [1/σ2]

∑n
k=1(Xk−X̄n)

2 is independent of X̄n and has χ2
n−1 distribution.

• If X is Gamma(α, λ), then Sn is Gamma(nα, λ).
• If X is Cauchy, then so is Sn/n.

Limit Theorems. If σX exists, then Var(X̄n) = σ2
X/n, and we have

• LLN (Law of Large Numbers):

lim
n→∞

X̄n = µX

(in probability, with probability one, and in L1);
• CLT (Central Limit Theorem):

lim
n→∞

P
(√

n(X̄n − µX)

σX
≤ x

)
= lim

n→∞
P
(
(Sn − nµX)√

nσX
≤ x

)
= Φ(x),

where Φ is the cdf of the standard normal distribution;
• LIL (Law of Iterated Logarithm):

P

(
lim sup
n→∞

√
n(X̄n − µX)

σX
√
2 ln(ln(n))

= 1

)
= P

(
lim sup
n→∞

Sn − nµX√
nσX

√
2 ln(ln(n))

= 1

)
= 1,

where lim supn→∞ an = limn→∞ supk≥n ak.



• In the special case X is Bernoulli: P(X = 1) = p, P(X = 0) = 1 − p, so that µX = p,
σ2
X = p(1−p), and Sn is Binomial(n, p), we also have the Local Limit Theorem (LLT), which

gives an approximation by the normal pdf as opposed to cdf:

n!

k!(n− k)!
pk(1− p)n−k ≈ 1√

2π
√
np(1− p)

exp

(
− (k − np)2

2np(1− p)

)
;

this is equivalent to the Stirling formula n! ≈
√
2πn(n/e)n.

• Other special limit theorems: H(N,m, n) ≈ B(n,m/N) for large N,m and fixed n; B(n, p) ≈
P(np) for large n and small p; P(λ) ≈ N (λ, λ) for large λ.

Conditional expectation. Assuming σX is finite, g(Y ) = E(X|Y ) is the function of Y such that
g(Y ) minimizes E(X−f(Y ))2 among all possible functions f ; Eg(Y ) = E(X) = µX , E

(
(f(Y )X|Y ) =

f(Y )E(X|Y ). If X and Y are independent, then E(X|Y ) = µX . Conditional variance is

Var(X|Y ) = E
((

X − E(X|Y )
)2|Y ); Var(X) = Var

(
E(X|Y )

)
+ EVar(X|Y ).

Bi-variate Gaussian distribution. [(X,Y ) is bi-variate Gaussian] ↔ [aX + bY is Gaussian for
every real a, b]. In this case, E(X|Y ) = µX + ρX,Y (σX/σY )(Y − µY ) (normal correlation theorem).

Inequalities.

(1) Markov: if X ≥ 0, then P(X > c) ≤ [EX]/c.
(2) Chebyshev: P(|X − µX | > c) ≤ [Var(X)]/c2.
(3) Jensen: if f = f(x) is convex (f ′′(x) ≥ 0), then Ef(X) ≥ f(µX). For example, MX(t) ≥ etµX .

(4) Cauchy-Schwartz: |E(XY )| ≤
√
EX2

√
EY 2.

(5) Hölder: |E(XY )| ≤
(
E|X|p

)1/p (E|Y |q
)1/q

, (1/p) + (1/q) = 1.

(6) Lyapunov: if p > q, then
(
E|X|p

)1/p ≥ (E|X|q
)1/q

.

Types of convergence for random variables. The sequence of random variables ξn, n ≥ 1,
converges to random variable ξ, as n → ∞

(1) With probability one, if P(limn→∞ ξn = ξ) = 1;
(2) In probability, if, for every ε > 0, limn→∞ P(|ξn − ξ| > ε) = 0;
(3) In distribution, if limn→∞ Fξn(x) = Fξ(x) for all x where Fξ is continuous. Equivalently,

limn→∞ φξn(t) = φξ(t) for all t.
(4) In Lp, p > 0, if limn→∞ E|ξn − ξ|p = 0.

“With probability one” implies “In probability”, and “In probability” implies “In distribution”.
“In Lp” implies “In probability”. If the limit ξ is constant (non-random), then “In distribution”
implies “In probability”.


