
Fall 2019
Math 605: Numerical Methods in Stochastic Analysis

The idea is to (1) do the problems, (2) think about the questions, (3) have a one-
sentence description of the each of the key ideas and “other points”, (4) remember
some of the “random bits and pieces”.

Problems

(1) Compare five ways to generate a standard normal random variable: (a) acceptance-
rejection with exponential, (b) Box-Muller polar method, (c) Marsaglia polar
method, (d) ratio of two uniforms, (e) the build-in method in MATLAB or sim-
ilar computer algebra system. Compare both the computational complexity
(e.g. using the CPU time or the number of flops) and the quality (using, e.g.
Q-Q plot, χ2 test, or some measure of the difference between the empirical and
the normal cdf).

(2) Generate 100 iid symmetric α-stable random variables corresponding to α = 0.1
and to α = 0.9. In each case, run your favorite statistical test confirming (or
denying?) that you got the right distribution.

(3) Implement a procedure for generating iid Poisson random variables, and a pro-
cedure for generating iid geometric random variables. In each case, make sure
to include the corresponding parameter.

(4) Let X1, . . . , Xn be iid copies of a random variable X and let Y1, . . . , Yn be iid
copies of a random variable Y , independent of X. Assume that both X and Y
have finite variance. Investigate the following two ways to estimate the product
(EX) · (EY ): as a product of the sample means
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Namely (a) determine analytically which estimator has smaller variance; (b)
check your conclusion experimentally (for example, when X is normal with
mean 1 and variance 1 and Y is uniform on [0, 1]; you are welcome to consider
other distributions. The choice of n is up to you).

(5) Let X = (X0, X1, X2, . . .) be a mean-square stationary sequence, that is, EXn =
θ and Cov(Xk+n, Xk) = Cov(Xn, X0) = ρ(n) for all n, k ≥ 0. For r = 1, 2, 3, . . .,
define
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1

n

n∑

k=1

Xkr, θ̂nr =
1

nr

nr∑

k=1

Xk.

Each of θ̂n,r and θ̂nr can be considered an estimator of θ.
(a) Compute the mean-square error for each estimator. How does the mean

square error depend on r? Which estimator is the best?
(b) Find a sufficient condition for the estimators to be consistent as n →∞.
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(c) Check your conclusions experimentally when Xk = aXk−1 + ξk, where
|a| < 1, ξk, k ≥ 1, are iid standard normal, and X0 is normal with mean
zero and variance 1/(1− a2) [why?], independent of ξk. Try both positive and
negative values of a, for example, a = ±1/2.

(6) Implement Siegmund’s algorithm when the random walk is made up of (a) iid
Bernoulli random variables with values ±1 with the corresponding probabilities
0.4 and 0.6; (b) iid normal random variables with mean -0.2 and variance 0.24.
In both cases, you need some preliminary analytical work to get the optimal
value of the parameter for the change of measure, which involves computation
of the moment generating function. To solve the corresponding equation, you
are welcome to use computer. Try several different values for the level x. Also,
see if you can get analytical bound on the corresponding probability of the first
passage: this will give you an idea how large x should be in order for the change
of measure to make computational sense.

(7) Check how Example 1.1 in Chapter VI of the book works on computer, taking
π = 0.00001 and m = 10. More specifically, the problem is to estimate the prob-
ability that, in Bernoulli trials with probability of success in one trial 10−5, the
first success will happen during the first 10 trials. This probability is very small:
the probability to have no successes in 10 trials is (0.99999)10 = 0.999900005
(according to my pocket calculator), and so we are looking at the probability
0.000099995, which is pretty close to the approximation mπ = 10−4. Your
task is to estimate this probability to within 5% relative accuracy with 95%
confidence [that is, the total length of the 95% confidence interval for π should
be no more than 10% of π, which is 10−5] using Monte Carlo simulations of
Bernoulli trials with probability of success in one trial 0.1. The exact formula
to use is on top of page 161 of the book. Also, estimate how many simulations
you expect to conduct and compare the result with (a) the actual number, (b)
the estimated number of experiments in the case of direct simulation (when you
expect about 10,000 experiments to get a single “success”).

For extra credit, think about the following: since the procedure works the
same way for any probability of success, why not take probability of success
bigger (say, 0.5), so that the probability of the event in question is closer to
1? You are welcome to try the corresponding experiment with equally likely
success and failure and confirm that the results are not as good. You are even
more welcome to provide mathematical reasons for that.

(8) Investigate how the Robbins-Monro algorithm works for finding zeroes of the
function f(x) = sin x observed in standard Gaussian noise.

(9) Determine all zeros and critical points of the function

f(x) = (x− 2)(x− 1)x2(x + 1)3(x + 2)3

observed in standard Gaussian noise. What if the observation noise is symmet-
ric Cauchy?

(10) Reproduce the pictures from Figures 3.1 and 3.2 on page 266 in the book. Of
course, the exact reproduction is impossible, given the random nature of the
experiment, so the objective is to evaluate the integral on page 265 using (a)
standard Monte Carlo method; (b) Quasi-Monte Carlo method with a Halton
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sequence, and to plot the approximations against the number of simulations.
Beside the Halton sequence, you are welcome to try other low discrepancy
sequences.

(11) Reproduce, as much as possible, the pictures from page 303 of the book, and
also make a picture of the sample path of the process W (t)−t with reflection at
zero. For extra credit, confirm experimentally that the stationary distribution
of the process is exponential with mean 1/2.

(12) Generate a sample path of the Lévy process with the triplet (0, 0, ν), where
ν(dx) ∼ |x|−α−1dx (symmetric stable) or ν(dx) ∼ x−α−1I(x > 0) dx (the corre-
sponding subordinator) for α = 1/2, 1, 3/2 (that would be six paths overall).

(13) Design a procedure generating a prescribed number of prescribed orthogonal
polynomials. Test it on Hermite and something else.

(14) Design a procedure generating a prescribed number of prescribed Appel poly-
nomials. Confirm that, under the right conditions, you get the same Hermite
polynomials as in the orthogonal case.

Questions

(1) How to use nonlinear recursions (e.g. logistic map) to generate random num-
bers?

(2) What are the correct normalization and the limit distribution for the Lp norm
of the difference between the empirical and true cdfs, for 1 ≤ p < ∞? The
Kolmogorov-Smirnov test corresponds to p = ∞.

(3) How to use the function F← to generate discrete random variables (e.g. Pois-
son)?

(4) How to quantify the idea of the von Mises-Church collective?
(5) How to generate a uniform distribution on a manifold G ⊂ Rn when the

Lebesgue measure of G is zero? The famous example (mentioned in the text)
is the 2-dim sphere in the three-dimensional space. Can we extend it to an
ellipsoid? Will it be easier to generate uniform distribution on the torus, the
Klein bottle, or the real projective plane?

(6) In what models can we get convergence rate faster than the canonical n1/2, and
how much faster can this rate be?

(7) How to modify the jackknife procedure by omitting more than one observation
at a time, and can this (or some other) modification lead to higher-order bias
reduction?

(8) What is the general form of the expansion of the bias and what are the condi-
tions for the expansion to hold up to a prescribed order?

(9) How does sectioning procedure work for the particular example of estimating
the population mean and is it the same as using the idea of sectioning in the
finite-dimensional (as opposed to infinite-dimensional or functional) setting?

(10) If a CLT holds for the sample mean of f(X(t)), where X = X(t) is an ergodic
process, then

∫∞
0

Covπ

(
f(X(t)), f(X(0))

)
dt is finite and positive, where Covπ

means the covariance is computed under the assumption that X is stationary
and X(t) has the invariant distribution π for all t ≥ 0. What conditions on the
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process and the function f ensure that the integral is indeed finite and positive?
Will those conditions be enough to imply the CLT? Are there examples of an
ergodic process for which the integral is (a) finite but negative, (b) positive
infinite (c) negative infinite, (d) does not exist at all? How does the function
f enter the picture? The same questions apply to discrete time too, and could
be easier to study.

(11) Derivation of the regenerative ratio formula used the solution of a certain equa-
tion, and so the underlying assumption is that the equation has at least one
solution; this assumption is non-trivial if the state space of the process is infi-
nite. While the solution of the equation does not appear in the final formula,
what happens to the formula if the equation does not have a solution? Can it
happen that the solution is such that the corresponding process is not a mar-
tingale but only a local martingale?

(12) Ideal importance sampling looks very much like size biasing, which suggests
potential connections with Stein’s method. Can you think of any useful con-
nections?

(13) How small can the probability P∗(Sn > nx) be after the optimal exponential
tilting of measure (e.g., do we have a uniform (in n and/or x) bound from be-
low)?

(14) How will the Robbins-Monro algorithm work with perfect evaluations of the
function?

(15) How will the secant method work with noisy measurements of the function?

(16) What other recursive algorithms can benefit from a Polyak-Ruppert-type aver-
aging?

(17) Is bisection method equivalent to generating Brownian motion using anti-derivatives
of the Haar basis functions? Will higher-order wavelets make corresponding
simulations any better?

(18) Why do both strong and weak convergence orders consider the values only at
the terminal time? How will the analysis and results change if a function-space
norm is considered instead?

(19) The Lévy process generalizes the standard Brownian motion: similar to the
Brownian motion, we get stationary and independent increments, but, unlike
the Brownian motion, the trajectories are not necessarily continuous. What
would be a similar generalization of the fractional Brownian motion? For some
results in this direction, see A Unifying Approach To Fractional Lévy Processes
by E. Engelke and J. H. C. Woerner in Stochastics and Dynamics Vol. 13, No.
2 (2013).

(20) Consider the circulant embedding of the covariance matrix of the increments
of the fractional Brownian motion. Is the matrix always positive definite? The
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cases to check are (a) different values of the Hurst parameter and (b) a pos-
sibility to have non-uniform spacing of the time points where we sample the
process.

(21) What can we say about a random circulant embedding matrix? In other words,
in the original circulant embedding of the correlation matrix, replace the distinct
entries with iid random variables supported in [−1, 1]. Will the result be positive
definite?

Key ideas

(1) Acceptance-rejection method.
(2) Copula (to model dependence and to extend distributions other than normal

to several dimensions).
(3) Canonical rate of convergence and variance control.
(4) Confidence interval.
(5) Bias and mean-square error.
(6) Delta method.
(7) Invariant distribution.
(8) Regeneration.
(9) Perfect sampling.

(10) Relaxation time.
(11) Importance sampling.
(12) Antithetic sampling.
(13) Stratification.
(14) Bounded relative error vs. logarithmic efficiency.
(15) Rare event simulation via importance sampling.
(16) Siegmund’s algorithm.
(17) Doob’s h transform for Markov processes (a general procedure to condition a

Markov process on something).
(18) Robbins-Monro and Kiefer-Wolfowitz algorithms.
(19) Using a low-discrepancy sequence to speed up Monte Carlo simulations.
(20) Weak and strong order of approximation for stochastic differential equations.
(21) Milstein’s scheme.
(22) Simulation of a Lévy process.
(23) Metropolis-Hastings algorithm.
(24) Simulating a Gaussian vector using the circulant embedding of its covariance

matrix and FFT.
(25) Iterative Function System (IFS) representation of a Markov chain.
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Other points

(1) The left-continuous inverse of a cdf.
(2) Generation of a random variable as a ratio of two dependent uniforms.
(3) Glivenko-Cantelli theorem and related results about convergence of the empir-

ical cdf.
(4) Bootstrapping.
(5) Jackknifing.
(6) Sectioning.
(7) Confidence ellipsoid.
(8) Simulation budget.
(9) CLT for the sample mean for dependent random variables.

(10) Propp-Wilson algorithm.
(11) Variance reduction by conditioning.
(12) Exponential family and exponential tilting of measure.
(13) Heavy tails vs. light tails.
(14) Large deviations bound vs. sharp asymptotic.
(15) Rare event simulation along the most likely of all the unlikely trajectories (the

true Large Deviations approach to rare event simulation).
(16) How to estimate the tail of a distribution.
(17) Estimating the derivative (FD, IPA, and LR methods).
(18) Polyak-Ruppert averaging.
(19) EM algorithm.
(20) “Asymptotic” analysis of the Robbins-Monro algorithm in one dimension.
(21) Different ways to generate Brownian motion and the L1 and L∞ approximation

errors for the Gaussian random walk/linear interpolation method.
(22) From a stochastic differential equation with additive noise to a random equa-

tion.
(23) Fractional Brownian motion.
(24) Special types of the Lévy processes (compound Poisson, symmetric stable, sub-

ordinator).
(25) Component-wise Metropolis-Hastings algorithm and the Gibbs sampler.
(26) Using the birth-death process to represent a number of basic queuing systems,

such as M/M/m and M/M/∞.
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Random bits and pieces

(1) Log-convex/concave functions.
(2) von Mises-Church collective.
(3) Poisson point process.
(4) Markov, semi-Markov, and generalized semi-Markov processes.
(5) Frechet-Hoeffding bound.
(6) Law of iterated log and sequential analysis.
(7) Buffon’s needle.
(8) Perpetuity.
(9) Implied volatility.

(10) Skewness and kurtosis.
(11) Palm inversion.
(12) Harris chain.
(13) Latin square.
(14) Call-put parity.
(15) Variance decompositions.
(16) Some definitions and results from ergodic theory.
(17) Function of regular variation.
(18) Mogul’skii’s theorem.
(19) Strong and weak laws of large numbers.
(20) Greeks (in option pricing).
(21) First-order linear finite-difference equation with variable coefficients.
(22) P vs NP problem.
(23) Parameter estimation with heavy-tailed noise.
(24) Quadrature rules of Newton-Cotes and Gauss.
(25) The Bessel process.
(26) The Langevin equation and the role of

√
2 in the diffusion.

(27) Circulant (matrix).
(28) Self-similarity.
(29) FFT.
(30) A 4-th order rational approximation of the inverse of the standard normal cdf.
(31) Domination number of a graph.
(32) Failures in time (FIT) as a measure of reliability.


