Stochastic Analysis in Continuous Time!

Stochastic basis with the usual assumptions: F = (Q, F,{F;};>0,P), where Q is the probability space (a set of
elementary outcomes w); F is the sigma-algebra of events (sub-sets of Q that can be measured by P); {F;}i1>0 is the
filtration: F; is the sigma-algebra of events that happened by time ¢ so that Fy, C F; for s < t; P is probability:
finite non-negative countably additive measure on the (£, F) normalized to one (P(2) = 1). The usual assumptions
are about the filtration: Fy is P-complete, that is, if A € Fy and P(A) = 0, then every sub-set of A is in Fy [this
minimises the technical difficulties related to null sets and is not hard to achieve]; and {F; };>¢ is right-continuous, that

is, Ft = () Ftte, t > 0 [this simplifies some further technical developments, like stopping time vs. optional time and
e>0
might be hard to achieve, but is assumed nonetheless.?]

Stopping time 7 on F is a random variable with values in [0, +00] and such that, for every ¢t > 0, the set {w : 7(w) < t}
is in F;.> The sigma algebra F, consists of all the events A from F such that, for every ¢t > 0, A({w: 7(w) <t} € F.
In particular, non-random 7 = T > 0 is a stopping time and F, = Fr. For a stopping time 7, intervals such as (0,7)
denote a random set {(w,t) : 0 <t < 7(w)}.

A random/stochastic process X = X(t) = X(w,t), t > 0, is a collection of random variables®. Equivalently, X
is a measurable mapping from Q to RI%*°) . The process X is called measurable if the mapping (w,t) — X (w,t) is
measurable as a function from Q x [0, +00) to R. The process X is called adapted if X(t) € F;, t > 0, that is, the
random variable X (t) is Fi-measurable for every ¢ > 0. The standing assumption is that every process is measurable
and adapted.

The stopped process X7 is defined for a stopping time 7 as follows:

=y = {igz’i)(w)) o <

The filtration {F;*};>( generated by the process X is Fj* = o(X(s), s <t).

A typical stopping time is inf{t > 0: X (¢) € A} for a Borel set A € R, with convention inf{(}} = +oc. In particular,
setting 7,, = inf{t > 0 : |X(¢)| > n}, we call 7% = lim,, o 7, the explosion time of X and say that X does not
explode if P(7% = 400) = 1.

A (sample) path/trajectory of the process X is the mapping t — X (w,t) for fixed w. The two main spaces for the
sample paths are C (continuous functions with the sup norm) and D (the Skorokhod space of cadlag [right-continuous,
with limits from the left] functions with a suitable metric). On a finite time interval, both C and D are complete
separable metric spaces.”

Equality of random processes. In general X =Y for two random processes can mean

(1) Equality of finite-dimensional distributions: random vectors {X(tx),k = 1,...,n} and {Y(tx),k = 1,...,n}
have the same distributions for every finite collection of t.

(2) Equality in law: P(X € A) = P(Y € A) for all measurable sets A in some function space [typically C or D].

(3) Equality as modifications: P(X (t) =Y (t)) =1 for all ¢ > 0.

(4) X and Y are indistinguishable: P(X (t) = Y (¢) for all t > 0) = 1.

If X,Y have sample paths in D, then equality as modifications implies that X and Y are indistinguishable.

The Kolmogorov continuity criterion: if E|X(t) — X(s)[? < C|t — s|**9, C,p,q > 0, then X has a continuous
modification [in fact, the sample paths are Hélder continuous of every order less than q/p].°

Special types of random processes.
(1) X has independent increments if X (¢) — X (s) is independent of F for all t > s > 0.
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2Note that any filtration can be made right-continuous by re-defining F; to be () Fi4e, but this “cheap trick” enlarges the filtration and
>0

can potentially ruin some useful properties (Markov, martingale) available under ?he original filtration.

3Opti0na1 time has {T < t} € F¢, t > 0; every stopping time is optional, and, for a right-continuous filtration, every optional time is stopping.

4more generally, X (t) can take values in any measurable space

5In fact, both C and D are Banach spaces with respect to the sup norm, but D is not separable with the corresponding metric; this is why a

special (Skorokhod) metric is necessary

6Tn the case of random fields, that is, t,s € R™, the same conclusion requires the inequality to hold with power n + ¢ instead of 1 + q.



(2) X is Markov if P(X(t) € A|F,) =P(X(t) € A|X(s)), t > s > 0.

(3) X is a (sub/super) martingale if E|X(¢)| < oo for all ¢ > 0 and E(X (¢)|Fs) (> / <) = X(s).

(4) X is a square-integrable martingale if X is a martingale and E|X (¢)|? < oo for all ¢ > 0.

(5) X is a local (square-integrable) martingale if there is a sequence 7,,, n > 1, of stopping times such that,
for each n, the process X™ is a (square-integrable) martingale and also, with probability one, 7,11 > 7, and
lim,, s+ o0 T = +00.

(6) X is a strict local martingale if it is a local martingale but not a martingale.

(7) X is a semimartingale if X = M + A for a local martingale M and a process of bounded variation A.

(8) X is predictable if it is measurable with respect to the sigma-algebra on §2 x [0, +00) generated by continuous
processes [random processes with continuous sample paths]; in particular, a continuous process is predictable.

(9) X is a Wiener process if X(0) =0 and the processes t — X (t) and t — X?2(t) — t are continuous martingales.

Basic facts.

(1) If W = W(t) is a standard Brownian motion, then F}V is right-continuous. Once F}V is P-completed, W
becomes a continuous square-integrable martingale on the stochastic basis (Q, F, {F}¥ }+>0,P) satisfying the
usual assumptions.

(2) A continuous local martingale M is a local square-integrable martingale: replace the original 7,, with 7, Ainf{t >
0:|M(t)| > n}.

(3) A process X with independent increments is Markov; if also E| X (¢)| < oo, then t — X (¢)—EX (¢) is a martingale.

(4) The process X = X (¢) with X (0) = 0 is a martingale if EX(7) = 0 for every bounded stopping time 7.

(5) THE OPTIONAL STOPPING THEOREM: if X is a martingale with X(0) = 0 and 7 is a stopping time with
P(r < o0) = 1, then EX(7) = 0 as long as X and 7 “cooperate” with each other [bounded 7 or uniformly
integrable family {X (¢), t > 0} always works].

(6) If X is a submartingale” and the function ¢ — EX(¢) is in D, then X has a modification in D; in particular,
every martingale has a cadlag modification.

(7) JENSEN’s INEQUALITY: If X is a martingale and f = f(x) is convex, with E|f(X (¢))] < oo, then f(X) is a
submartingale.

(8) DOOB-MEYER DECOMPOSITION: If X is a submartingale with cadlag sample paths, then X = M + A for a local
martingale M and a predictable non-decreasing process A, and the representation is unique up to a modification.

(9) LEVY CHARACTERISATION OF THE BROWNIAN MOTION: A Wiener process is a standard Brownian motion.

(10) A non-negative local martingale is supermartingale; if the trajectories are cadlag, then there is no explosion.

Two basic constructions.

(1) QUADRATIC CHARACTERISTIC (X ) of a local square-integrable martingales X is the increasing process in the
Doob-Meyer decomposition of X2. To indicate time dependence, notation (X), is used. For example, if W is
Wiener process, then (W), = t. If X is a square-integrable martingale, then EX?(t) = E(X),; if N is Poisson
with intensity A and M (t) = N(t) — At, then (M), = At. If X is a continuous square-integrable martingale, then
(X); is the quadratic variation of X: (X); is the limit in probability of > ; (X () — X(tk_l))Z, as the
size of the partition of [0,t] goes to 0 [Karatzas-Shreve, Brownian motion and stoch. calc, Thm. 1.5.8].

(2) LocaL TIME L* = L%(t), a € R, of a continuous martingale X is the increasing process in the Doob-Meyer
decomposition of | X — al.

Burholder-Davis-Gundy (BDG) inequality: Let M = M (t) be a continuous local martingale with M (0) = 0 and
let 7 be a stopping time. Define M*(7) = sup,., [M(t)|. Then, for every p > 0, there exist positive numbers ¢, and
C, such that ¢,E(M)?/* < E(M*(r))" < C,E(M)2/?. For 0 < p < 2, we can take ¢, = 222 and C), = 3=2 [L-Sh-Mart,
Thm. 1.9.5] so that ¢; =1/3,Cy = 3.

In general, the Ité stochastic integral fot Y (s)dX(s) of a predictable process Y with respect to a semimartingale
X is defined as a suitable limit of Y, Y () (X (tg+1) — X ().

In particular, if X = W is a Wiener process, then, as long as Y is adapted and fOT Y?2(t)dt < oo with probability
one for some non-random 7" > 0, the stochastic integral V() = fot Y (s)dW (s) defines a continuous local martingale for
t € [0,T] with (V), = [} Y?(s)ds.

A single word, as opposed to dashed, as in sub-martingale, seems to be the standard; constructions such as localmartingale can sometime
happen too.



