Stochastic Analysis in Continuous Time¹

Stochastic basis with the usual assumptions: $\mathbb{F} = (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, where Ω is the probability space (a set of elementary outcomes ω); \mathcal{F} is the sigma-algebra of events (sub-sets of Ω that can be measured by \mathbb{P}); $\{\mathcal{F}_t\}_{t\geq 0}$ is the filtration: \mathcal{F}_t is the sigma-algebra of events that happened by time t so that $\mathcal{F}_s \subseteq \mathcal{F}_t$ for s < t; \mathbb{P} is probability: finite non-negative countably additive measure on the (Ω, \mathcal{F}) normalized to one $(\mathbb{P}(\Omega) = 1)$. The usual assumptions are about the filtration: \mathcal{F}_0 is \mathbb{P} -complete, that is, if $A \in \mathcal{F}_0$ and $\mathbb{P}(A) = 0$, then every sub-set of A is in \mathcal{F}_0 [this minimises the technical difficulties related to null sets and is not hard to achieve]; and $\{\mathcal{F}_t\}_{t\geq 0}$ is right-continuous, that is, $\mathcal{F}_t = \bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}, t \geq 0$ [this simplifies some further technical developments, like stopping time vs. optional time and

might be hard to achieve, but is assumed nonetheless.²]

Stopping time τ on \mathbb{F} is a random variable with values in $[0, +\infty]$ and such that, for every $t \ge 0$, the set $\{\omega : \tau(\omega) \le t\}$ is in \mathcal{F}_t .³ The sigma algebra \mathcal{F}_τ consists of all the events A from \mathcal{F} such that, for every $t \ge 0$, $A \cap \{\omega : \tau(\omega) \le t\} \in \mathcal{F}_t$. In particular, non-random $\tau = T \ge 0$ is a stopping time and $\mathcal{F}_\tau = \mathcal{F}_T$. For a stopping time τ , intervals such as $(0, \tau)$ denote a random set $\{(\omega, t) : 0 < t < \tau(\omega)\}$.

A random/stochastic process $X = X(t) = X(\omega, t), t \ge 0$, is a collection of random variables⁴. Equivalently, X is a measurable mapping from Ω to $\mathbb{R}^{[0,+\infty)}$. The process X is called measurable if the mapping $(\omega, t) \mapsto X(\omega, t)$ is measurable as a function from $\Omega \times [0,+\infty)$ to \mathbb{R} . The process X is called adapted if $X(t) \in \mathcal{F}_t, t \ge 0$, that is, the random variable X(t) is \mathcal{F}_t -measurable for every $t \ge 0$. The standing assumption is that every process is measurable and adapted.

The stopped process X^{τ} is defined for a stopping time τ as follows:

$$X^{\tau}(t) = X(t \wedge \tau) = \begin{cases} X(\omega, t), & t \leq \tau(\omega), \\ X(\omega, \tau(\omega)), & \tau(\omega) \leq t. \end{cases}$$

The filtration $\{\mathcal{F}_t^X\}_{t\geq 0}$ generated by the process X is $\mathcal{F}_t^X = \sigma(X(s), s \leq t)$.

A typical stopping time is $\inf\{t \ge 0 : X(t) \in A\}$ for a Borel set $A \in \mathbb{R}$, with convention $\inf\{\emptyset\} = +\infty$. In particular, setting $\tau_n = \inf\{t > 0 : |X(t)| > n\}$, we call $\tau_X^* = \lim_{n \to \infty} \tau_n$ the explosion time of X and say that X does not explode if $\mathbb{P}(\tau_X^* = +\infty) = 1$.

A (sample) path/trajectory of the process X is the mapping $t \mapsto X(\omega, t)$ for fixed ω . The two main spaces for the sample paths are C (continuous functions with the sup norm) and \mathcal{D} (the Skorokhod space of càdlàg [right-continuous, with limits from the left] functions with a suitable metric). On a finite time interval, both C and \mathcal{D} are complete separable metric spaces.⁵

Equality of random processes. In general X = Y for two random processes can mean

- (1) Equality of finite-dimensional distributions: random vectors $\{X(t_k), k = 1, ..., n\}$ and $\{Y(t_k), k = 1, ..., n\}$ have the same distributions for every finite collection of t_k .
- (2) Equality in law: $\mathbb{P}(X \in \mathcal{A}) = \mathbb{P}(Y \in \mathcal{A})$ for all measurable sets \mathcal{A} in some function space [typically \mathcal{C} or \mathcal{D}].
- (3) Equality as modifications: $\mathbb{P}(X(t) = Y(t)) = 1$ for all $t \ge 0$.
- (4) X and Y are indistinguishable: $\mathbb{P}(X(t) = Y(t) \text{ for all } t \ge 0) = 1.$

If X, Y have sample paths in \mathcal{D} , then equality as modifications implies that X and Y are indistinguishable.

The Kolmogorov continuity criterion: if $\mathbb{E}|X(t) - X(s)|^p \leq C|t - s|^{1+q}$, C, p, q > 0, then X has a continuous modification [in fact, the sample paths are Hölder continuous of every order less than q/p].⁶

Special types of random processes.

(1) X has independent increments if X(t) - X(s) is independent of \mathcal{F}_s for all $t > s \ge 0$.

¹Sergey Lototsky, USC; updated on June 25, 2022

²Note that any filtration can be made right-continuous by re-defining \mathcal{F}_t to be $\bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}$, but this "cheap trick" enlarges the filtration and can potentially ruin some useful properties (Markov, martingale) available under the original filtration.

³Optional time has $\{\tau < t\} \in \mathcal{F}_t, t \ge 0$; every stopping time is optional, and, for a right-continuous filtration, every optional time is stopping. ⁴more generally, X(t) can take values in any measurable space

⁵In fact, both C and D are Banach spaces with respect to the sup norm, but D is not separable with the corresponding metric; this is why a special (Skorokhod) metric is necessary

⁶In the case of random fields, that is, $t, s \in \mathbb{R}^n$, the same conclusion requires the inequality to hold with power n + q instead of 1 + q.

- 2
- (2) X is Markov if $\mathbb{P}(X(t) \in A | \mathcal{F}_s) = \mathbb{P}(X(t) \in A | X(s)), t > s \ge 0.$
- (3) X is a (sub/super) martingale if $\mathbb{E}|X(t)| < \infty$ for all t > 0 and $\mathbb{E}(X(t)|\mathcal{F}_s)$ $(\geq / \leq) = X(s)$.
- (4) X is a square-integrable martingale if X is a martingale and $\mathbb{E}|X(t)|^2 < \infty$ for all t > 0.
- (5) X is a local (square-integrable) martingale if there is a sequence τ_n , $n \ge 1$, of stopping times such that, for each n, the process X^{τ_n} is a (square-integrable) martingale and also, with probability one, $\tau_{n+1} \ge \tau_n$ and $\lim_{n \to +\infty} \tau_n = +\infty$.
- (6) X is a strict local martingale if it is a local martingale but not a martingale.
- (7) X is a semimartingale if X = M + A for a local martingale M and a process of bounded variation A.
- (8) X is predictable if it is measurable with respect to the sigma-algebra on $\Omega \times [0, +\infty)$ generated by continuous
- processes [random processes with continuous sample paths]; in particular, a continuous process is predictable. (9) X is a Wiener process if X(0) = 0 and the processes $t \mapsto X(t)$ and $t \mapsto X^2(t) - t$ are continuous martingales.

Basic facts.

- (1) If W = W(t) is a standard Brownian motion, then \mathcal{F}_t^W is right-continuous. Once \mathcal{F}_0^W is \mathbb{P} -completed, W becomes a continuous square-integrable martingale on the stochastic basis $(\Omega, \mathcal{F}, \{\mathcal{F}_t^W\}_{t\geq 0}, \mathbb{P})$ satisfying the usual assumptions.
- (2) A continuous local martingale M is a local square-integrable martingale: replace the original τ_n with $\tau_n \wedge \inf\{t \ge 0 : |M(t)| \ge n\}$.
- (3) A process X with independent increments is Markov; if also $\mathbb{E}|X(t)| < \infty$, then $t \mapsto X(t) \mathbb{E}X(t)$ is a martingale.
- (4) The process X = X(t) with X(0) = 0 is a martingale if $\mathbb{E}X(\tau) = 0$ for every bounded stopping time τ .
- (5) THE OPTIONAL STOPPING THEOREM: if X is a martingale with X(0) = 0 and τ is a stopping time with $\mathbb{P}(\tau < \infty) = 1$, then $\mathbb{E}X(\tau) = 0$ as long as X and τ "cooperate" with each other [bounded τ or uniformly integrable family $\{X(t), t \ge 0\}$ always works].
- (6) If X is a submartingale⁷ and the function $t \mapsto \mathbb{E}X(t)$ is in \mathcal{D} , then X has a modification in \mathcal{D} ; in particular, every martingale has a càdlàg modification.
- (7) JENSEN'S INEQUALITY: If X is a martingale and f = f(x) is convex, with $\mathbb{E}|f(X(t))| < \infty$, then f(X) is a submartingale.
- (8) DOOB-MEYER DECOMPOSITION: If X is a submartingale with càdlàg sample paths, then X = M + A for a local martingale M and a predictable non-decreasing process A, and the representation is unique up to a modification.
- (9) LÉVY CHARACTERISATION OF THE BROWNIAN MOTION: A Wiener process is a standard Brownian motion.
- (10) A non-negative local martingale is supermartingale; if the trajectories are càdlàg, then there is no explosion.

Two basic constructions.

- (1) QUADRATIC CHARACTERISTIC $\langle X \rangle$ of a local square-integrable martingales X is the increasing process in the Doob-Meyer decomposition of X^2 . To indicate time dependence, notation $\langle X \rangle_t$ is used. For example, if W is Wiener process, then $\langle W \rangle_t = t$. If X is a square-integrable martingale, then $\mathbb{E}X^2(t) = \mathbb{E}\langle X \rangle_t$; if N is Poisson with intensity λ and $M(t) = N(t) \lambda t$, then $\langle M \rangle_t = \lambda t$. If X is a continuous square-integrable martingale, then $\langle X \rangle_t$ is the quadratic variation of X: $\langle X \rangle_t$ is the limit in probability of $\sum_{k=1}^n (X(t_k) X(t_{k-1}))^2$, as the size of the partition of [0, t] goes to 0 [Karatzas-Shreve, Brownian motion and stoch. calc, Thm. 1.5.8].
- (2) LOCAL TIME $L^a = L^a(t)$, $a \in \mathbb{R}$, of a *continuous* martingale X is the increasing process in the Doob-Meyer decomposition of |X a|.

Burholder-Davis-Gundy (BDG) inequality: Let M = M(t) be a continuous local martingale with M(0) = 0 and let τ be a stopping time. Define $M^*(\tau) = \sup_{t \leq \tau} |M(t)|$. Then, for every p > 0, there exist positive numbers c_p and C_p such that $c_p \mathbb{E} \langle M \rangle_{\tau}^{p/2} \leq \mathbb{E} (M^*(\tau))^p \leq C_p \mathbb{E} \langle M \rangle_{\tau}^{p/2}$. For $0 , we can take <math>c_p = \frac{2-p}{4-p}$ and $C_p = \frac{4-p}{2-p}$ [L-Sh-Mart, Thm. 1.9.5] so that $c_1 = 1/3, C_1 = 3$.

In general, the Itô stochastic integral $\int_0^t Y(s) dX(s)$ of a *predictable* process Y with respect to a semimartingale X is defined as a suitable limit of $\sum_k Y(t_k) (X(t_{k+1}) - X(t_k))$.

In particular, if X = W is a Wiener process, then, as long as Y is adapted and $\int_0^T Y^2(t)dt < \infty$ with probability one for some non-random T > 0, the stochastic integral $V(t) = \int_0^t Y(s)dW(s)$ defines a continuous local martingale for $t \in [0,T]$ with $\langle V \rangle_t = \int_0^t Y^2(s) ds$.

 $^{^{7}}$ A single word, as opposed to dashed, as in *sub-martingale*, seems to be the standard; constructions such as *localmartingale* can sometime happen too.