
Stochastic Analysis in Continuous Time1

Stochastic basis with the usual assumptions: F = (Ω,F , {Ft}t≥0,P), where Ω is the probability space (a set of
elementary outcomes ω); F is the sigma-algebra of events (sub-sets of Ω that can be measured by P); {Ft}t≥0 is the
filtration: Ft is the sigma-algebra of events that happened by time t so that Fs ⊆ Ft for s < t; P is probability:
finite non-negative countably additive measure on the (Ω,F) normalized to one (P(Ω) = 1). The usual assumptions

are about the filtration: F0 is P-complete, that is, if A ∈ F0 and P(A) = 0, then every sub-set of A is in F0 [this
minimises the technical difficulties related to null sets and is not hard to achieve]; and {Ft}t≥0 is right-continuous, that
is, Ft =

∩
ε>0

Ft+ε, t ≥ 0 [this simplifies some further technical developments, like stopping time vs. optional time and

might be hard to achieve, but is assumed nonetheless.2]

Stopping time τ on F is a random variable with values in [0,+∞] and such that, for every t ≥ 0, the set {ω : τ(ω) ≤ t}
is in Ft.

3 The sigma algebra Fτ consists of all the events A from F such that, for every t ≥ 0, A
∩
{ω : τ(ω) ≤ t} ∈ Ft.

In particular, non-random τ = T ≥ 0 is a stopping time and Fτ = FT . For a stopping time τ , intervals such as (0, τ)
denote a random set {(ω, t) : 0 < t < τ(ω)}.

A random/stochastic process X = X(t) = X(ω, t), t ≥ 0, is a collection of random variables4. Equivalently, X
is a measurable mapping from Ω to R[0,+∞). The process X is called measurable if the mapping (ω, t) 7→ X(ω, t) is
measurable as a function from Ω × [0,+∞) to R. The process X is called adapted if X(t) ∈ Ft, t ≥ 0, that is, the
random variable X(t) is Ft-measurable for every t ≥ 0. The standing assumption is that every process is measurable
and adapted.

The stopped process Xτ is defined for a stopping time τ as follows:

Xτ (t) = X(t ∧ τ) =

{
X(ω, t), t ≤ τ(ω),

X(ω, τ(ω)), τ(ω) ≤ t.

The filtration {FX
t }t≥0 generated by the process X is FX

t = σ
(
X(s), s ≤ t

)
.

A typical stopping time is inf{t ≥ 0 : X(t) ∈ A} for a Borel set A ∈ R, with convention inf{∅} = +∞. In particular,
setting τn = inf{t > 0 : |X(t)| > n}, we call τ∗X = limn→∞ τn the explosion time of X and say that X does not
explode if P(τ∗X = +∞) = 1.

A (sample) path/trajectory of the process X is the mapping t 7→ X(ω, t) for fixed ω. The two main spaces for the
sample paths are C (continuous functions with the sup norm) and D (the Skorokhod space of càdlàg [right-continuous,
with limits from the left] functions with a suitable metric). On a finite time interval, both C and D are complete
separable metric spaces.5

Equality of random processes. In general X = Y for two random processes can mean

(1) Equality of finite-dimensional distributions: random vectors {X(tk), k = 1, . . . , n} and {Y (tk), k = 1, . . . , n}
have the same distributions for every finite collection of tk.

(2) Equality in law: P(X ∈ A) = P(Y ∈ A) for all measurable sets A in some function space [typically C or D].
(3) Equality as modifications: P

(
X(t) = Y (t)

)
= 1 for all t ≥ 0.

(4) X and Y are indistinguishable: P
(
X(t) = Y (t) for all t ≥ 0

)
= 1.

If X,Y have sample paths in D, then equality as modifications implies that X and Y are indistinguishable.

The Kolmogorov continuity criterion: if E|X(t) − X(s)|p ≤ C|t − s|1+q, C, p, q > 0, then X has a continuous
modification [in fact, the sample paths are Hölder continuous of every order less than q/p].6

Special types of random processes.

(1) X has independent increments if X(t)−X(s) is independent of Fs for all t > s ≥ 0.
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2Note that any filtration can be made right-continuous by re-defining Ft to be

∩
ε>0

Ft+ε, but this “cheap trick” enlarges the filtration and

can potentially ruin some useful properties (Markov, martingale) available under the original filtration.
3Optional time has {τ < t} ∈ Ft, t ≥ 0; every stopping time is optional, and, for a right-continuous filtration, every optional time is stopping.
4more generally, X(t) can take values in any measurable space
5In fact, both C and D are Banach spaces with respect to the sup norm, but D is not separable with the corresponding metric; this is why a
special (Skorokhod) metric is necessary
6In the case of random fields, that is, t, s ∈ Rn, the same conclusion requires the inequality to hold with power n+ q instead of 1 + q.
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(2) X is Markov if P
(
X(t) ∈ A|Fs

)
= P

(
X(t) ∈ A|X(s)

)
, t > s ≥ 0.

(3) X is a (sub/super) martingale if E|X(t)| < ∞ for all t > 0 and E
(
X(t)|Fs

)
(≥ / ≤) = X(s).

(4) X is a square-integrable martingale if X is a martingale and E|X(t)|2 < ∞ for all t > 0.
(5) X is a local (square-integrable) martingale if there is a sequence τn, n ≥ 1, of stopping times such that,

for each n, the process Xτn is a (square-integrable) martingale and also, with probability one, τn+1 ≥ τn and
limn→+∞ τn = +∞.

(6) X is a strict local martingale if it is a local martingale but not a martingale.
(7) X is a semimartingale if X = M +A for a local martingale M and a process of bounded variation A.
(8) X is predictable if it is measurable with respect to the sigma-algebra on Ω× [0,+∞) generated by continuous

processes [random processes with continuous sample paths]; in particular, a continuous process is predictable.
(9) X is a Wiener process if X(0) = 0 and the processes t 7→ X(t) and t 7→ X2(t)− t are continuous martingales.

Basic facts.

(1) If W = W (t) is a standard Brownian motion, then FW
t is right-continuous. Once FW

0 is P-completed, W
becomes a continuous square-integrable martingale on the stochastic basis (Ω,F , {FW

t }t≥0,P) satisfying the
usual assumptions.

(2) A continuous local martingale M is a local square-integrable martingale: replace the original τn with τn∧ inf{t ≥
0 : |M(t)| ≥ n}.

(3) A processX with independent increments is Markov; if also E|X(t)| < ∞, then t 7→ X(t)−EX(t) is a martingale.
(4) The process X = X(t) with X(0) = 0 is a martingale if EX(τ) = 0 for every bounded stopping time τ .
(5) The Optional Stopping Theorem: if X is a martingale with X(0) = 0 and τ is a stopping time with

P(τ < ∞) = 1, then EX(τ) = 0 as long as X and τ “cooperate” with each other [bounded τ or uniformly
integrable family {X(t), t ≥ 0} always works].

(6) If X is a submartingale7 and the function t 7→ EX(t) is in D, then X has a modification in D; in particular,
every martingale has a càdlàg modification.

(7) Jensen’s inequality: If X is a martingale and f = f(x) is convex, with E|f(X(t))| < ∞, then f(X) is a
submartingale.

(8) Doob-Meyer decomposition: If X is a submartingale with càdlàg sample paths, then X = M +A for a local
martingale M and a predictable non-decreasing process A, and the representation is unique up to a modification.

(9) Lévy characterisation of the Brownian motion: A Wiener process is a standard Brownian motion.
(10) A non-negative local martingale is supermartingale; if the trajectories are càdlàg, then there is no explosion.

Two basic constructions.

(1) Quadratic characteristic 〈X〉 of a local square-integrable martingales X is the increasing process in the
Doob-Meyer decomposition of X2. To indicate time dependence, notation 〈X〉t is used. For example, if W is
Wiener process, then 〈W 〉t = t. If X is a square-integrable martingale, then EX2(t) = E〈X〉t; if N is Poisson
with intensity λ and M(t) = N(t)−λt, then 〈M〉t = λt. If X is a continuous square-integrable martingale, then

〈X〉t is the quadratic variation of X: 〈X〉t is the limit in probability of
∑n

k=1

(
X(tk) − X(tk−1)

)2
, as the

size of the partition of [0, t] goes to 0 [Karatzas-Shreve, Brownian motion and stoch. calc, Thm. 1.5.8].
(2) Local time La = La(t), a ∈ R, of a continuous martingale X is the increasing process in the Doob-Meyer

decomposition of |X − a|.

Burholder-Davis-Gundy (BDG) inequality: Let M = M(t) be a continuous local martingale with M(0) = 0 and
let τ be a stopping time. Define M∗(τ) = supt≤τ |M(t)|. Then, for every p > 0, there exist positive numbers cp and

Cp such that cpE〈M〉p/2τ ≤ E
(
M∗(τ)

)p ≤ CpE〈M〉p/2τ . For 0 < p < 2, we can take cp = 2−p
4−p and Cp = 4−p

2−p [L-Sh-Mart,

Thm. 1.9.5] so that c1 = 1/3, C1 = 3.

In general, the Itô stochastic integral
∫ t

0
Y (s) dX(s) of a predictable process Y with respect to a semimartingale

X is defined as a suitable limit of
∑

k Y (tk)
(
X(tk+1)−X(tk)

)
.

In particular, if X = W is a Wiener process, then, as long as Y is adapted and
∫ T

0
Y 2(t)dt < ∞ with probability

one for some non-random T > 0, the stochastic integral V (t) =
∫ t

0
Y (s)dW (s) defines a continuous local martingale for

t ∈ [0, T ] with 〈V 〉t =
∫ t

0
Y 2(s) ds.

7A single word, as opposed to dashed, as in sub-martingale, seems to be the standard; constructions such as localmartingale can sometime

happen too.


