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1. Introduction

With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.

Date: August 6, 2019 c© 2019 Steven Heilman, All Rights Reserved.
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John von Neumann

In Statistical Learning Theory, i.e. the statistical theory of machine learning, we will focus
on the following questions:

• How do we choose a model that fits the data? (This is the one basic question in
statistics.)
• How do we find the best model parameter? (This is the another basic question in

statistics.)
• What algorithm for solving a given problem is most efficient? (Here “most efficient”

can have several meanings, such as run time or memory usage, in the worst case or
average case.)
• Even if we can efficiently find the best model parameter in a statistical problem, is

that parameter meaningful? (As the quote of von Neumann points out, it may not
be meaningful to fit a model with too many parameters to data. Moreover, finding
correlations in data in not often meaningful. For example, the number of Nobel prizes
awarded to a country is highly correlated with that country’s chocolate consumption,
but this correlation is not at all meaningful. See also Exercise 1.1.)
• Can we design algorithms that function when data arrives in a stream? (That is,

suppose we only have access to a small amount of a larger group of data at any time,
e.g. due to memory constraints on a computer. Can we still find good algorithms in
this case?)

When answering these questions, we should also consider the following dichotomies for
algorithms:

• Deterministic algorithms vs. randomized algorithms (i.e. those that use randomness)
• Exact vs. approximation approximation algorithms. (Sometimes an exact efficient

algorithm does not exist, while an efficient algorithm that is approximately correct
does exist.)
• Theoretical vs. practical algorithms. (Some algorithms work well in theory, but im-

plied constants in their run times can be so large that such algorithms are impractical.
Also, some algorithms work well according to practitioners, but there is no known
theoretical guarantee that they work well for an arbitrary data set.)
• Supervised vs. unsupervised learning. (Supervised learning uses labelled data, unsu-

pervised learning does not.)

In practice it is also important to consider when an algorithm can run in parallel on different
computers, but we will not focus on this topic in this course.

Landau’s Asymptotic Notation. Let f, g : R→ C. We use the notation f(t) = o(g(t)),

∀ t ∈ R to denote limt→∞
∣∣f(t)
g(t)

∣∣ = 0. We use the notation f(t) = O(g(t)) to denote that

∃ c > 0 such that |f(t)| ≤ c |g(t)| for all t ∈ R. We write f(t) = Ω(g(t)) when ∃ c > 0
such that |f(t)| ≥ c |g(t)| for all t ∈ R. We write f(t) = Θ(g(t)) when f(t) = O(g(t)) and
g(t) = O(f(t)).

Standard Norm/Inner Product Notation. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn, define the standard inner product 〈x, y〉 :=

∑n
i=1 xiyi. We also denote ‖x‖ := (

∑n
i=1 x

2
i )

1/2

as the standard norm on Rn.
For more notation see Section 12.
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Exercise 1.1. Let x(1), . . . , x(m) be m vectors in Rn with
∥∥x(i)

∥∥ = 1 for all 1 ≤ i ≤ m. Let
ε > 0. Assume that m > (1 + 2/ε)n. Show that there exists i, j ∈ {1, . . . ,m} such that∥∥x(i) − x(j)

∥∥ < ε.

Consequently, the vectors x(i) and x(j) are highly correlated, so that 〈x(i), x(j)〉 > 1− ε2/2.
That is, if you have enough vectors on a unit sphere, at least two of them will be correlated
with each other.

(If you want a big hint, look ahead to Proposition 4.3.)

To better understand our basic questions and dichotomies, we consider them for several
specific examples.

Example 1.2 (Computing Determinants). Let n > 0 be an integer. Suppose we want
to compute the determinant of a real n× n matrix A with entries Aij, i, j ∈ {1, . . . , n}. An
inefficient but straightforward way to do this is to directly use a definition of the determinant.
Let Sn denote the set of all permutations on n elements. For any σ ∈ Sn, let sign(σ) := (−1)j,
where σ can be written as a composition of j transpositions (Exercise: this quantity is well-
defined). (A transposition σ ∈ Sn satisfies σ(i) = i for at least n− 2 elements of {1, . . . , n}.)
Then

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i=1

Aiσ(i).

This sum has |Sn| = n! terms. So, if we use this formula to directly compute the determinant
of A, in the worst case we will need to perform at least (n + 1) · n! arithmetic operations.
This is quite inefficient. We know a better algorithm from linear algebra class. We first
perform row operations on A to make it upper triangular. Suppose B is an n×n real matrix
such that BA represents one single row operation on A (i.e. adding a multiple of one row to
another row). Then there are real n× n matrices B1, . . . , Bm such that

B1 · · ·BmA (∗)
is an upper triangular matrix. The matrices B1, . . . , Bm can be chosen to first eliminate the
left-most column of A under the diagonal, then the second left-most column entries under
the diagonal, and so on. That is, we can choose m ≤ n(n − 1)/2, and each row operation
involves at most 3n arithmetic operations. So, the multiplication of (∗) uses at most

3mn ≤ 2n3

arithmetic operations. The determinant of the upper diagonal matrix (∗) is then the product
of its diagonal elements, and

det(B1 · · ·BmA) = det(B1) · · · det(Bm) det(A).

That is,

det(A) =
det(B1 · · ·BmA)

det(B1) · · · det(Bm)
.

So, det(A) can be computed with at most 2n3 +m+n ≤ 4n3 = O(n3) arithmetic operations.
Can we do any better?

It turns out that this is possible. Indeed, if it is possible to multiply two n × n real
matrices with O(na) arithmetic operations for some a > 0, then it is possible to compute
the determinant of an n × n matrix with O(na) arithmetic operations. The näıve way to
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multiply two real n × n matrices requires O(n3) arithmetic operations, so that a = 3 is
achievable. However a < 2.3728639 is the best known upper bound [Gal14] (building upon
Coppersmith-Winograd, Stothers, and Williams.) I do not think the algorithm with such a
value of a has been implemented in practice, since the implied constants in its analysis are
quite large, and apparently the algorithm does not parallelize. On the other hand, Strassen’s
algorithm has been implemented, and it has a = log 7/ log 2 ≈ 2.807.

What if we only have access to the matrix in the streaming setting? That is, suppose n
is so large or the memory of the computer is so limited that we can only store a few of the
rows of the matrix at one time. In this case, it is impossible to know the determinant of the
whole matrix. For example, suppose the first n− 1 rows of the matrix A are known linearly
independent vectors, and the last row of the matrix is known, except its last entry. If the
last row is identical to the first row (except for their last entries), then changing the last
entry could make the determinant of A zero or nonzero. So, it seems like we need to know
essentially the whole matrix to even approximately know the determinant of the matrix, or
even more fundamentally, the rank of the matrix. Indeed this is the case [CW09].

All of the above algorithms are deterministic, and they compute the determinant exactly
(up to machine precision).

Remark 1.3. Interestingly, computing the permanent of a matrix

per(A) =
∑
σ∈Sn

n∏
i=1

Aiσ(i)

is #P-complete. However, for any ε > 0, there is a (1 + ε) polynomial time approximation
algorithm for computing the permanent.

Example 1.4 (Least Squares). Suppose we want to solve a least squares minimization
problem. Suppose x ∈ Rm is an unknown vector, and A is a known m × n real matrix.
Let Z ∈ Rn be a vector of i.i.d. standard Gaussian random variables. Our observation is
y := Aw + Z, and the goal is to recover the unknown vector w. In linear least squares
regression, we try to determine the best linear relationship w between the rows of A and
the observation y. Assume that n ≤ m and the matrix A has full rank (so that ATA is
invertible). The vector x ∈ Rm that minimizes the quantity

‖y − Ax‖2 :=
n∑
i=1

(yi − (Ax)i)
2

is then
x := (ATA)−1ATy. (∗)

Equivalently, x minimizes
E ‖y − x‖2

over all choices of vectors x ∈ Rm such that x = By for some n×m real matrix B, and such
that Ex = w. (Since Z is the only random variable here, E denotes expected value with
respect to Z.)

So, solving the linear least squares minimization problem could “just” use equation (∗).
However, inverting a matrix directly is inefficient and could introduce numerical error. Below
are some alternative ways of computing x. From (∗), we first write

ATAx = ATy,
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and we then do any one of the following.

• Compute the Cholesky decomposition of ATA. That is, we write ATA = RTR
where R is an upper triangular n× n matrix with positive diagonal elements. Then,
RTRx = ATy, and solve the following simpler problems: (1) solve RT z = ATy for
the unknown z ∈ Rn, then (2) solve Rx = z for x ∈ Rn. This is our desired x, since

RTRx = RT z = ATy.

• Compute the QR decomposition of the matrix A. That is, we write A = QR where
Q is an m×n rectangular matrix with QTQ = In, where In denotes the n×n identity
matrix, and R is an upper triangular n× n matrix with positive diagonal elements.
Then (ATA)−1 = (RTQTQR)−1 = (RTR)−1, so (ATA)−1AT = (RTR)−1RTQT , and
(RTR)−1RT = R−1, so we have

x
(∗)
= R−1QTy.

• Compute the singular value decomposition of the matrix A. (That is, we write
A = USV , where U is an m × m orthogonal matrix, V is an n × n orthogonal
matrix, and S is an n× n diagonal matrix with nonnegative entries.) Then ATAx =
V TS2V x = ATy, and solve the following simpler problems: (1) solve V T z = ATy for
the unknown z ∈ Rn, then (2) solve S2V x = z for x ∈ Rn. This is our desired x,
since

ATAx = V TS2V x = V T z = ATy.

These algorithms all use O(n3) arithmetic operations, and they assume we have access to
the whole matrix A.

What if we only have streaming access to A? Put another way, is there an algorithm that
only needs to access a small amount of A at any single time? The answer is yes. Recall
that A is an m× n matrix with m ≥ n. In some cases, m will be much larger than n. The
recursive algorithm described below only needs to store an n × n matrix of A at any given
time, and it is given access to one row of A at a time.

For a more modern view of this problem, see e.g. [KKP17].

Exercise 1.5. Let A be an m× n real matrix with m ≥ n. Then A has rank n if and only
if ATA is positive definite.

(Hint: ATA is always positive semidefinite.)

Algorithm 1.6 (Recursive Least Squares/ Online Learning). Let m ≥ n, let A be an
m × n real matrix. Let a(1), . . . , a(m) ∈ Rn be row vectors which are the rows of A (data),
and let b ∈ Rm. For any j ≥ n, let

Aj :=

a(1)

...
a(j)

 , b(j) :=

b1
...
bj

 .

Assume that An has rank n (so that ATnAn is invertible). Define

x(n) := (ATnAn)−1ATnb
(n) ∈ Rn, Pn := (ATnAn)−1.

For any j ≥ n, define

5



Pj+1 = Pj −
Pj(a

(j+1))Ta(j+1)P T
j

1 + a(j+1)Pj(a(j+1))T
.

x(j+1) = x(j) + Pj+1(a(j+1))T (bj+1 − a(j+1)x(j)).

The vectors x(n), . . . , x(m) recursively minimize the quantity ‖Ax− b‖2 in the following
sense.

Proposition 1.7. Let λ > 0. Let x(n), . . . , x(m) be the output of Algorithm 1.6. Let n ≤ j ≤
m. Define fj : Rn → R by

fj(x) :=
1

2

j∑
i=1

(〈x, a(i)〉 − bi)2, x ∈ Rn.

Then x(j) minimizes fj on Rn. In particular, when j = m, x(m) minimizes ‖Ax− b‖2.

Proof. We induct on j. The case j = n follows by definition of x(n) and by (∗). We now
complete the inductive step. Assume the Proposition holds for j, and consider the case j+1.
Define Gj := (ATj Aj).

First, note that

Gj+1 =
(
ATj (a(j+1))T

)( Aj
a(j+1)

)
= ATj Aj + (a(j+1))Ta(j+1) = Gj + (a(j+1))Ta(j+1). (∗)

By the inductive hypothesis and (∗), we have x(j) = G−1
j ATj b

(j). So,

ATj b
(j) = GjG

−1
j ATj b

(j) = Gjx
(j) (∗)

= (Gj+1 − (a(j+1))Ta(j+1))x(j). (∗∗)
From (∗), the minimum of fj+1 on Rn occurs when

x = G−1
j+1A

T
j+1b

(j+1) = G−1
j+1

(
Aj
a(j+1)

)T (
b(j)

bj+1

)
= G−1

j+1(ATj b
(j) + bj+1(a(j+1))T )

(∗∗)
= G−1

j+1

(
Gj+1x

(j) − (a(j+1))Ta(j+1)x(j) + bj+1(a(j+1))T
)

= x(j) +G−1
j+1(a(j+1))T (bj+1 − a(j+1)x(j)).

Comparing this formula to the definition of x(j+1) in Algorithm 1.6, it remains to manip-
ulate the G−1

j+1 term. Applying Exercise 1.8 to (∗),

G−1
j+1 = (Gj + (a(j+1))Ta(j+1))−1 = G−1

j −
G−1
j (a(j+1))Ta(j+1)G−1

j

1 + a(j+1)G−1
j (a(j+1))T

.

Finally, note that Pn = G−1
n , and since the matrices Pj and G−1

j satisfy the same recursion,

we get Pj = G−1
j , completing the proof.

�

Exercise 1.8. Show the following identity. Let A be an r × r real matrix, let U be an
r × s real matrix, and let V be an s × r real matrix. Assume that A is invertible and that
I+V A−1U is invertible, where I is the s× s identity matrix. Then A+UV is invertible and

(A+ UV )−1 = A−1 − (A−1U)(I + V A−1U)−1(V A−1).
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In particular, if s = 1, we get the Sherman-Morrison formula:

(A+ UV )−1 = A−1 − A−1UV A−1

1 + V A−1U
.

Example 1.9 (Minimum Vertex Cover). Suppose we have a set of vertices V := {1, . . . , n}
and a set of undirected edges E ⊆ {{i, j} : i, j ∈ V }. The goal of the minimum vertex cover
problem is to find the smallest vertex cover of the graph G = (V,E). A vertex cover is a
subset S ⊆ V such that every {i, j} ∈ E satisfies i ∈ S or j ∈ S. More generally, for any
i ∈ V , let ci ∈ R, ci ≥ 0. We are asked to minimize the weighted sum∑

i∈S

ci

over all S ⊆ V such that every {i, j} ∈ E satisfies i ∈ S or j ∈ S. (To recover the unweighted
minimum vertex cover problem, let ci := 1 for all 1 ≤ i ≤ n.) For a somewhat contrived
example, we could think of the vertices as cities, and the set S as a subset of cities where cell
phone towers are placed. And each cell phone tower is designed to cover the city in which it
resides, and any adjacent cities.

There is a simple polynomial time algorithm that, given G = (V,E) whose minimum
vertex cover has size a > 0, finds a vertex cover S ⊆ V such that

a ≤ |S| ≤ 2a.

This algorithm is therefore called a 2-approximation algorithm for the minimum vertex cover
problem.

It is known that there exists an α > 1 such that finding an α-approximation to the
minimum vertex cover problem is NP-complete. So, it seems impossible to efficiently solve
the minimum vertex cover problem. More specifically, if we were given G = (V,E) whose
minimum vertex cover has size c > 0, and we could finds a vertex cover S ⊆ V in polynomial
time such that

c ≤ |S| ≤ αc,

then P = NP , and we would solve one of the Millennium Prize Problems. Since it is widely
believed that P 6= NP , it is doubtful that the Minimum Vertex Cover problem can be solved
in time polynomial in n. In fact, the constant α = 2 is believed to be the best possible
approximation. That is, it is conjectured that it is NP-hard to find a 1.9999-approximation
to the minimum vertex cover problem [KR08].

Let us describe the deterministic algorithm.

Algorithm 1.10 (Greedy Algorithm for Unweighted Min-Vertex Cover). Given a
graph G = (V,E), begin with S := ∅. Iterate the following procedure until E is empty.

• Choose some edge {i, j} ∈ E.
• Redefine S := S ∪ {i} ∪ {j}, and remove from E any edge whose endpoint is either i

or j.

When E is empty, output S.

Proposition 1.11. Algorithm 1.10 is a 2-approximation algorithm for the unweighted min-
imum vertex cover problem.
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Proof. Let a be the size of the minimum vertex cover of a graph G = (V,E). Let E ′ be the
set of edges that is found in the first step of all iterations of Algorithm 1.10. By step two
of the iteration, each edge in E ′ is encountered exactly once in step one, and the vertices of
each edge in E ′ are all disjoint from each other. Moreover, steps one and two of the iteration
imply that S is a vertex cover. Also, step two implies that the minimum vertex cover must
contain at least one endpoint of each edge in E ′, otherwise some edge would be not covered
by the minimum vertex cover. So, |E ′| ≤ a. In summary,

|S| = 2 |E ′| ≤ 2a.

Lastly, |S| ≥ a by definition of c. �

There is also a randomized 2-approximation algorithm for the general (weighted) minimum
vertex problem using linear programming. The Minimum Vertex Cover problem is:

minimize 〈c, x〉 subject to the constraints

xi ∈ {0, 1}, ∀ i ∈ V
xi + xj ≥ 1, ∀ {i, j} ∈ E

We then solve the following linear program and try to relate its solution to the above problem.

minimize 〈c, x〉 subject to the constraints

xi ∈ [0, 1], ∀ i ∈ V
xi + xj ≥ 1, ∀ {i, j} ∈ E

Recall that an n × n matrix A is symmetric if A = AT . We denote the n × n identity
matrix as I or In. Recall that an n × n matrix A is orthogonal if A is a real matrix such
that ATA = AAT = I.

Theorem 1.12 (Spectral Theorem for Real Symmetric Matrices). Let A be a real
n×n symmetric matrix. Then there exists an n×n orthogonal matrix Q and a real diagonal
matrix D such that

A = QTDQ.

Equivalently, there exists an orthonormal basis of Rn consisting of eigenvectors of A with
real eigenvalues.

Example 1.13 (Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA)). Suppose A is an m × n real matrix. We think of each row of A as a
vector of data. The matrix ATA is then an n × n real symmetric matrix. By the Spectral
Theorem 1.12, there exists an n×n orthogonal matrix Q and a real diagonal matrix D such
that

ATA = QTDQ.

Similarly, the matrix AAT is an m×m real symmetric matrix. The Spectral Theorem 1.12
implies that there exists an m×m orthogonal matrix R and a real diagonal matrix G such
that

AAT = RTGR.

Note that all entries of D are nonnegative, since if v ∈ Rn is an eigenvector of ATA with
eigenvalue λ ∈ R, then

λ ‖v‖2 = λ〈v, v〉 = 〈v,ATAv〉 = 〈Av,Av〉 = ‖Av‖2 .
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That is, we must have λ ≥ 0. So, the square root of D (i.e. the diagonal matrix all of whose
entries are the square roots of the entries of D) is well-defined. We denote the square root

of D as
√
D, so that (

√
D)2 = D. Note that we can then write

A = RT
√
DQ.

This factorization of A is called a singular value decomposition of A. (In general, the

matrices RT ,
√
D,Q are not uniquely determined by A, though the entries of

√
D are uniquely

determined by A.) The entries of
√
D are called the singular values of A.

So, at least theoretically, a singular value decomposition exists. How can we find it on
a computer? If the matrix A is relatively small, then we can compute ATA and find its
eigenvalues and eigenvectors by the Power Method (see Exercise 1.18 below). The matrix D
then consists of the eigenvalues and Q contains the eigenvectors of ATA. The power method
is especially efficient when A has very few nonzero entries.

If the matrix A is fairly large, we can instead randomly sample a small number of the rows
and columns of A, perform a singular value decomposition on this smaller matrix, and use
it to approximate the SVD of A itself [KV09, HMT11, Mah11].

SVD is used widely in practice. Note that since each data vector is a vector in Rn, and
each eigenvector of ATA is also a vector in Rn, any vector x ∈ Rn can be written uniquely as
a linear combination of eigenvectors of ATA (since these eigenvectors form an orthonormal
basis of Rn.) In many applications, it is generally expected that ATA has low rank or
“approximately low rank.” In such cases, the matrix ATA is well understood by examining
its eigenvectors with largest eigenvalues. For example, if ATA has rank k, then only k of
its eigenvectors are needed to understand ATA. Similarly, if ATA has k large eigenvalues
with the rest of them being close to zero, then only the first k eigenvectors are needed to
approximately understand ATA, and hence A.

PCA is designed with this observation in mind. In PCA, one uses the SVD of A (or of
A with each row of A subtracted by the average of all rows of A), and we examine the
eigenvectors of ATA (and AAT ) with the largest eigenvalues. In particular, the eigenvectors
of ATA with largest eigenvalues are judged to be the “principal components” of any data
vector x ∈ Rn. PCA is used e.g. when Netflix tries to find recommendations for movies or
shows you might enjoy. We consider each row of A to contain the preferences of one user,
e.g. containing their ratings for various movies (say entry Aij ∈ {1, 2, 3, 4, 5} is the rating
of user i for movie j). Suppose the eigenvectors of ATA with the k largest eigenvalues are
y(1), . . . , y(k). We can then e.g. examine the kth spectral embedding fk : {1, . . . , n} → Rk

that maps each movie to its vector of values on these eigenvectors:

fk(i) :=
(
y

(1)
i , . . . , y

(k)
i

)
, ∀ i ∈ {1, . . . , n}.

In practice, one observes that “similar” movies appear in clusters in the spectral embedding
set {fk(i)}ni=1 ⊆ Rk. We can then infer that someone who enjoys one movie in one cluster
will enjoy other movies in the same cluster. The actual application is a bit more complicated
since users do not rank all movies, so extra steps are made to fill or infer the missing entries
of A. Since the initial data vectors are in Rn but the set {fk(i)}ni=1 is in Rk with k < n,
PCA is considered a dimension reduction method.

PCA is also used in facial recognition with the so-called “eigenfaces” method. In this
case, each row of A is a vector (say of bitmap image values) of the front view of someone’s
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face. PCA is then performed on a standard large data set. Given a new face image x ∈ Rn,
we associate x to its “feature vector” gk(x) := (〈x, y(1)〉, . . . , 〈x, y(k)〉). We can then guess
if two different faces x, y ∈ Rn are the same or not the same by computing the distance
‖gk(x)− gk(y)‖. Alternatively, if we want to compare x to the set of images in the initial data
set (on which the original PCA was performed), we can try to find mini=1,...,n ‖gk(x)− fk(i)‖,
and then associate x with the value of i ∈ {1, . . . , n} achieving this minimum. The actual
application is more complicated. Images in practice do not often show the front of a face,
so extra steps can be made to infer the front view of a face from the image of a non-frontal
view of a face.

Since PCA and SVD use unlabelled data, they are considered methods in unsupervised
learning.

Example 1.14 (k-means Clustering). Let k,m, n be positive integers. Given m vectors
x(1), . . . , x(m) ∈ Rn, the k-means clustering problem asks for the partition S1, . . . , Sk of
{1, . . . ,m} into k sets which minimizes

k∑
i=1

∑
j∈Si

∥∥∥x(j) − 1

|Si|
∑
p∈Si

x(p)
∥∥∥2

. (∗)

For each 1 ≤ i ≤ k, the term 1
|Si|
∑

p∈Si x
(p) is the center of mass (or barycenter) of the

points in Si, so each term in the sum is the squared distance of some point in Si from
the barycenter of Si. So, k-means clustering can be seen as a kind of geometric version of
least-squares regression. We emphasize that k is fixed.

How can we solve this problem? The most basic algorithm is a “gradient-descent” proce-
dure known as Lloyd’s Algorithm.

Algorithm 1.15 (LLoyd’s Algorithm). Let x(1), . . . , x(m) ∈ Rn. Begin by choosing
y(1), . . . , y(k) ∈ Rn (randomly or deterministically), and define Ti := ∅ for all 1 ≤ i ≤ k.
Repeat the following procedure:

• For each 1 ≤ i ≤ k, re-define

Ti :=
{
j ∈ {1, . . . ,m} :

∥∥x(j) − y(i)
∥∥ = min

p=1,...,k

∥∥x(j) − y(p)
∥∥}.

(If more than one p achieves this minimum, assign j to an arbitrary such minimal
p.) (The sets T1, . . . , Tm are called Voronoi regions.)
• For each 1 ≤ i ≤ k, re-define y(i) := 1

|Ti|
∑

p∈Ti x
(p).

Once this procedure is iterated a specified number of times, output Si := Ti.

Algorithm 1.15 can be considered a “gradient-descent” procedure since the first step of
the iteration always decreases the quantity (∗) by the definition of (∗), and the second step
of the iteration always decreases (∗) by Exercise 1.16.

Exercise 1.16. Let x(1), . . . , x(m) ∈ Rn. Let y ∈ Rn. Show that
m∑
j=1

∥∥∥x(j) − 1

m

m∑
p=1

x(p)
∥∥∥2

≤
m∑
j=1

∥∥∥x(j) − y
∥∥∥2

.

That is, the barycenter is the point in Rn that minimizes the sum of squared distances.
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While Lloyd’s Algorithm 1.15 decreases the value of the quantity (∗), iterating this algo-
rithm many times does not guarantee that a global minimum of (∗) is found. To see why,
recall that the local minimum of a function f : R → R may not be the same as a global
minimum. So, while Lloyd’s Algorithm 1.15 is simple and it might work well in certain
situations, it has no general theoretical guarantees. Some work has been done to make a
“wise” choice of the initial points y(1), . . . , y(k).

So, are there any efficient algorithms with theoretical guarantees? For any ε > 0, there
is a 9 + ε factor approximation algorithm for the k-means clustering problem [KMN+04]
with a polynomial running time (that does not depend on k). This algorithm is based upon
[Mat00]. It was shown [ACKS15] that there exists some ε > 0 such that approximating the
k-means clustering problem with a multiplicative factor of 1+ε for all k is NP-hard. So, there
is a rather large gap between the best general purpose algorithm, and the hardness result.
Many algorithms can approximately solve the k-means clustering problem to a multiplicative
factor of 1 + ε, but these algorithms always have an exponential dependence on k for their
run times [HPM04]. So, if we try to use k = 100, which occurs in many applications, these
algorithms seem to be impractical.

It is possible to combine dimension-reduction techniques (such as PCA or the Johnson-
Lindenstrass Lemma, Theorem 5.6) with the above algorithms [CEM+15, MMR18], thereby
saving time by working in lower dimensions. However, these techniques do not seem to
improve the exponential run times in k.

Some streaming algorithms are known for k-means clustering [Che09, FMS07]. For exam-
ple, the algorithm of [Che09] uses memory of size O(d2k2ε−2(log n)8) to approximately solve
the k-means problem within a multiplicative factor of 1+ε. Note that the points themselves
are not actually stored in this algorithm, otherwise the memory requirement would be at
least Ω(n). In fact, only the barycenters of the clusters are typically stored in these streaming
algorithms, which drastically reduces the memory requirement.

Since k-means clustering uses unlabelled data (despite the fact that k needs to be speci-
fied), it is considered a method in unsupervised learning.

Exercise 1.17. Let n ≥ 2 be a positive integer. Let x = (x1, . . . , xn) ∈ Rn. For any
x, y ∈ Rn, define 〈x, y〉 :=

∑n
i=1 xiyi and ‖x‖ := 〈x, x〉1/2. Let Sn−1 := {x ∈ Rn : ‖x‖ = 1}

be the sphere of radius 1 centered at the origin. Let x ∈ Sn−1 be fixed. Let v be a random
vector that is uniformly distributed in Sn−1. Prove:

E |〈x, v〉| ≥ 1

10
√
n
.

Exercise 1.18 (The Power Method). This exercise gives an algorithm for finding the
eigenvectors and eigenvalues of a symmetric matrix. In modern statistics, this is often a
useful thing to do. The Power Method described below is not the best algorithm for this
task, but it is perhaps the easiest to describe and analyze.

Let A be an n×n real symmetric matrix. Let λ1 ≥ · · · ≥ λn be the (unknown) eigenvalues
of A, and let v1, . . . , vn ∈ Rn be the corresponding (unknown) eigenvectors of A such that
‖vi‖ = 1 and such that Avi = λivi for all 1 ≤ i ≤ n.

Given A, our first goal is to find v1 and λ1. For simplicity, assume that 1/2 < λ1 < 1, and
0 ≤ λn ≤ · · · ≤ λ2 < 1/4. Suppose we have found a vector v ∈ Rn such that ‖v‖ = 1 and
|〈v, v1〉| > 1/n. (From Exercise 1.17, a randomly chosen v satisfies this property.) Let k be

11



a positive integer. Show that

Akv

approximates v1 well as k becomes large. More specifically, show that for all k ≥ 1,∥∥Akv − 〈v, v1〉λk1v1

∥∥2 ≤ n− 1

16k
.

(Hint: use the spectral theorem for symmetric matrices.)
Since |〈v, v1〉|λk1 > 2−k/n, this inequality implies that Akv is approximately an eigenvector

of A with eigenvalue λ1. That is, by the triangle inequality,∥∥A(Akv)− λ1(Akv)
∥∥ ≤ ∥∥Ak+1v − 〈v, v1〉λk+1

1 v1

∥∥+ λ1

∥∥〈v, v1〉λk1v1 − Akv
∥∥ ≤ 2

√
n− 1

4k
.

Moreover, by the reverse triangle inequality,∥∥Akv∥∥ =
∥∥Akv − 〈v, v1〉λk1v1 + 〈v, v1〉λk1v1

∥∥ ≥ 1

n
2−k −

√
n− 1

4k
.

In conclusion, if we take k to be large (say k > 10 log n), and if we define z := Akv, then
z is approximately an eigenvector of A, that is∥∥∥∥A Akv

‖Akv‖
− λ1

Akv

‖Akv‖

∥∥∥∥ ≤ 4n3/22−k ≤ 4n−4.

And to approximately find the first eigenvalue λ1, we simply compute

zTAz

zT z
.

That is, we have approximately found the first eigenvector and eigenvalue of A.
Remarks. To find the second eigenvector and eigenvalue, we can repeat the above proce-

dure, where we start by choosing v such that 〈v, v1〉 = 0, ‖v‖ = 1 and |〈v, v2〉| > 1/(10
√
n).

To find the third eigenvector and eigenvalue, we can repeat the above procedure, where we
start by choosing v such that 〈v, v1〉 = 〈v, v2〉 = 0, ‖v‖ = 1 and |〈v, v3〉| > 1/(10

√
n). And

so on.
Google’s PageRank algorithm uses the power method to rank websites very rapidly. In

particular, they let n be the number of websites on the internet (so that n is roughly 109).
They then define an n× n matrix C where Cij = 1 if there is a hyperlink between websites
i and j, and Cij = 0 otherwise. Then, they let B be an n × n matrix such that Bij is 1
divided by the number of 1’s in the ith row of C, if Cij = 1, and Bij = 0 otherwise. Finally,
they define

A = (.85)B + (.15)D/n

where D is an n× n matrix all of whose entries are 1.
The power method finds the eigenvector v1 of A, and the size of the ith entry of v1 is

proportional to the “rank” of website i.

Exercise 1.19. Run PCA on a “planted” data set on a computer, consisting of 100 samples
in R10 of the random variable (X, Y, Z3, . . . , Z10) ∈ R10 where X, Y are standard Gaussian
random variables, Zi is a mean i Gaussian random variable with variance 10−2, for all
3 ≤ i ≤ 10, and X, Y, Z3, . . . , Z10 are all independent. (You can use your favorite computer
program to simulate the random variables.)
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Then, run PCA on Airline Safety Information, and try to find out something interesting
(this part of the question is intentionally open ended). The data is here, with accompanying
article here. (See also here.)

Exercise 1.20. Run a k-means clustering algorithm (e.g. Lloyd’s algorithm) on a “planted”
data set in R2 consisting of 50 samples from (X, Y ) and another 50 samples from (Z,W )
where X, Y, Z,W are all independent Gaussians with variance 1, X,W have mean zero, Y
has mean 1 and Z has mean 2. Try at least the values k = 2, 3, 4, 5.

Then, run a k-means clustering algorithm on Airline Safety Information, and try to find
out something interesting (this part of the question is intentionally open ended).

2. A General Supervised Learning Problem

In this course, one main focus is the following.

Problem 2.1 (Supervised Learning Problem). Let A,B be sets. Let f : A → B be
an unknown function. The goal of the learning problem is to determine the function f on
all of A using a small number of known values of f on A. Let x(1), . . . , x(k) ∈ A and let
y(1), . . . , y(k) ∈ B. It is known that

f(x(i)) = y(i), ∀ 1 ≤ i ≤ k.

We then want to exactly or approximately determine f on all of A.

The set of ordered pairs {(x(i), y(i))}ki=1 is sometimes called the training set. The function
f is sometimes called a predictor, hypothesis or classifier.

Without some assumptions on f , this problem is impossible to solve, since we could just
arbitrarily define f on inputs other than x(1), . . . , x(k). So, one must add some assumptions on
a class of functions f under consideration. One of the most basic and well studied examples
is the following subset of Boolean functions f : {−1, 1}n → {−1, 1}.

Definition 2.2 (Linear Threshold Functions). A function f : {−1, 1}n → {−1, 1} is
called a linear threshold function if there exists w ∈ Rn and t ∈ R such that

f(x) = sign(〈w, x〉 − t), ∀x ∈ {−1, 1}n.

Here

sign(s) :=
s

|s|
=


1 , if s > 0

0 , if s = 0

−1 , if s < 0.

A linear threshold function could also be called a single-layer neural network.

Here we are assuming that f defined in this way never takes the value 0, and we will
always make this assumption unless otherwise stated.

Linear threshold functions can be understood geometrically as two sets of points on either
side of a hyperplane.

Definition 2.3 (Hyperplane). Let w ∈ Rn, t ∈ R. A hyperplane in Rn is a set of the
form

{x ∈ Rn : 〈w, x〉 = t}.
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That is, if f : {−1, 1}n → {−1, 1} is a linear threshold function, then {x ∈ {−1, 1}n : f(x) =
1} lies on one side of the hyperplane, and {x ∈ {−1, 1}n : f(x) = −1} lies on the other side
of the hyperplane. For this reason, linear threshold functions are sometimes called half
spaces.

If we add the constraint that the unknown function f in Problem 2.1 is a linear threshold
function, we arrive at the following problem.

Problem 2.4 (Supervised Learning Problem for Linear Threshold Functions).
Let f : {−1, 1}n → {−1, 1} be an unknown linear threshold function. Let x(1), . . . , x(k) ∈
{−1, 1}n and let y1, . . . , yk ∈ {−1, 1}. It is known that

f(x(i)) = yi, ∀ 1 ≤ i ≤ k.

The goal of the problem is to find w ∈ Rn and t ∈ R such that

sign(〈w, x(i)〉 − t) = yi, ∀ 1 ≤ i ≤ k.

Remark 2.5 (Reduction to Homogeneous t = 0 Case). For all 1 ≤ i ≤ n, let z(i) :=
(x(i), 1) ∈ {−1, 1}n+1 and let w′ := (w, t) ∈ Rn+1 in Problem 2.4. The goal of Problem 2.4
can then be restated as: find w′ ∈ Rn+1 such that

sign(〈w′, z(i)〉) = yi, ∀ 1 ≤ i ≤ k.

For this reason, we will often assume t = 0 below when discussing Problem 2.4.

Remark 2.6. Problem 2.4 can be understood geometrically as trying to find a hyperplane
that separates the points {x ∈ {−1, 1}n : f(x) = 1} from {x ∈ {−1, 1}n : f(x) = −1}.

This problem is ill-posed as stated already when n = 2 and k = 4, since it is impossible
to separate pairs of opposite corners of {−1, 1}2 using a hyperplane.

Example 2.7. If f(1, 1) = f(−1,−1) = 1 and f(1,−1) = f(−1, 1) = −1, then there does
not exist w ∈ R2 and t ∈ R such that sign(〈w, x(i)〉 − t) = yi ∀ 1 ≤ i ≤ 4. To see this, we
can look at the “partial derivatives” of f as follows. Let w = (w1, w2) ∈ R2 and suppose
〈w, (1, 1)〉 > t, 〈w, (−1,−1)〉 > t and 〈w, (1,−1)〉 < t, 〈w, (−1, 1)〉 < t. Then

2w2 = 〈w, (1, 1)− (1,−1)〉 > 0, 2w1 = 〈w, (1, 1)− (−1, 1)〉 > 0,

So,
〈w, (1, 1)〉 = w1 + w2 > −w1 − w2 = 〈w, (−1,−1)〉.

Therefore, f(1, 1) > f(−1,−1), a contradiction.

So, in order for the learning problem 2.4 to be exactly solvable, we must assume that there
exists some w ∈ Rn, t ∈ R such that

sign(〈w, x(i)〉 − t) = yi, ∀ 1 ≤ i ≤ k.

If we only want to find a w ∈ Rn, t ∈ R such that this equality holds for 99% of 1 ≤ i ≤ k,
then that becomes a much different problem. We will discuss that problem in Section 3.

For a real world example of Problem 2.4, we can think of x as some sequence of letters
(encoded in binary) from an email, so that f takes value 1 on a spam email, and f takes
value −1 on non-spam emails. The goal is then to find the classifier f that can classify any
given email as spam or non-spam, using the “training data” x(1), . . . , x(k) ∈ {−1, 1}n and
y1, . . . , yk ∈ {−1, 1}.
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2.1. The Perceptron Algorithm. The Perceptron Algorithm is a basic algorithm for solv-
ing Problem 2.4 from the 1960’s. In this section, we will consider the homogeneous version
of Problem 2.4. Let x(1), . . . , x(k) ∈ {−1, 1}n and let y1, . . . , yk ∈ {−1, 1} be given. It is
known that

f(x(i)) = yi, ∀ 1 ≤ i ≤ k.

The goal of the problem is to find w ∈ Rn such that

sign(〈w, x(i)〉) = yi, ∀ 1 ≤ i ≤ k.

It is assumed that such a w exists.

Algorithm 2.8 (Perceptron Algorithm).

• Define w(1) := 0 ∈ Rn and let s := 1
• If there exists some 1 ≤ i ≤ k such that yi 6= sign(〈w(s), x(i)〉), i.e. a mis-classification

occurs, define

w(s+1) := w(s) + yix
(i).

• Increase the value of s by one. Repeat the previous step until no such i exists.
• Output w := w(s).

After the first step of the algorithm, we have w(2) = yix
(i), so we know that 〈w(2), x(i)〉 = yi.

That is, after one step of the algorithm, there is some 1 ≤ i ≤ k that is classified correctly.
Unfortunately, after obtaining w(3) in the next step of the algorithm, if x(i) was the vector
obtained from the first step of the algorithm, then 〈w(3), x(i)〉 and yi may not have the same
sign. That is, the second step of the algorithm could mis-classify the point we obtained in the
first step. So, a priori, Algorithm 2.8 may never terminate. Or at very least, the Algorithm
may take a very large number of steps until it terminates. Either situation would be quite
bad.

Note that the algorithm can be updated as it receives new data. For this reason, Algorithm
2.8 is called an online learning algorithm. However, the algorithm must keep all vectors
x(1), . . . , x(k) in memory, so it is not a streaming algorithm.

Theorem 2.9 (Perceptron Algorithm Run Time). Let x(1), . . . , x(k) ∈ Rn and let
y1, . . . , yk ∈ {−1, 1} be given. Assume that there exists w ∈ Rn such that

sign(〈w, x(i)〉) = yi, ∀ 1 ≤ i ≤ k.

Define

β := max
i=1,...,k

∥∥x(i)
∥∥ , θ := min

{
‖w‖ : ∀ 1 ≤ i ≤ k, yi〈w, x(i)〉 ≥ 1

}
.

Let w ∈ Rn achieve the minimum value in the definition of θ. Then the Perceptron Algorithm
2.8 terminates with a value of s satisfying

s ≤ (βθ)2.

Proof. We first show that the weight vector w(s) “moves towards” w at each iteration of the
algorithm:

〈w(s+1), w〉 ≥ 〈w(s), w〉+ 1, ∀ s ≥ 1. (∗)
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To see this, let 1 ≤ i ≤ k such that x(i) is selected during step two in iteration s of the
algorithm. By definition of w, note that yi〈w, x(i)〉 ≥ 1. And by definition of w(s+1) and w,

〈w(s+1), w〉 = 〈w(s), w〉+ yi〈x(i), w〉 ≥ 〈w(s), w〉+ 1.

We now show that the weight vector w(s) does not increase too much in length at each
iteration: ∥∥w(s+1)

∥∥2 ≤
∥∥w(s)

∥∥2
+ β2, ∀ s ≥ 1. (∗∗)

Since 1 ≤ i ≤ k was selected in step two of the algorithm, we have yi 6= sign(〈w(s), x(i)〉), i.e.
yi〈w(s), x(i)〉 < 0. Using this and the definition of w(s+1),∥∥w(s+1)

∥∥2
=
∥∥w(s) + yix

(i)
∥∥2

=
∥∥w(s)

∥∥2
+ 2〈w(s), yix

(i)〉+
∥∥x(i)

∥∥2

≤
∥∥w(s)

∥∥2
+
∥∥x(i)

∥∥2 ≤
∥∥w(s)

∥∥2
+ β2.

We now conclude the proof. Let s ≥ 1. Induction and (∗) imply that 〈w(s), w〉 ≥ s.

Induction and (∗∗) imply that
∥∥w(s)

∥∥2 ≤ sβ2. By definition of w, ‖w‖ = θ. So, the cosine

of the angle between w and w(s) satisfies

1 ≥ 〈w(s), w〉
‖w(s)‖ ‖w‖

≥ s

θ
√
sβ

=

√
s

θβ
.

That is,
√
s ≤ βθ. �

Remark 2.10. Instead of going through all points in Algorithm 2.8 until the separating
hyperplane is found, one could simply run through all points x(1), . . . , x(k) in order. Doing
so would speed up the algorithm, but the resulting weight vector w may not separate the
points correctly. One might call this effect underfitting.

When θ is large, there are some data vectors x(1), . . . , x(k) close to the separating hyper-
plane {x ∈ Rn : 〈w, x〉 = 0}. More specifically,

Lemma 2.11. Let x(1), . . . , x(k) ∈ Rn and let y1, . . . , yk ∈ {−1, 1} be given. Assume that
there exists w ∈ Rn such that

sign(〈w, x(i)〉) = yi, ∀ 1 ≤ i ≤ k.

Let w ∈ Rn achieve the minimum in min
{
‖w‖ : ∀ 1 ≤ i ≤ k, yi〈w, x(i)〉 ≥ 1

}
. Then w/ ‖w‖

achieves the maximum

max
v∈Rn, ‖v‖=1

min
i=1,...,k

yi〈v, x(i)〉. (∗)

Proof. Let v achieve the maximum value a > 0 in (∗). Then yi〈(v/a), x(i)〉 ≥ 1 by (∗). So,
by definition of w, ‖w‖ ≤ ‖v/a‖ = 1/a. If 1 ≤ i ≤ k, by definition of w,

yi〈(w/ ‖w‖), x(i)〉 =
1

‖w‖
yi〈w, x(i)〉 ≥ 1

‖w‖
≥ a.

So, w also achieves the maximum value in (∗). (Consequently, when we take mini=1,...,k, all
inequalities on the previous line must be equalities, so that a = 1/ ‖w‖.) �
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When ‖v‖ = 1, yi〈v, x(i)〉 is the distance from x(i) to the hyperplane {x ∈ Rn : 〈x, v〉 = 0}.
So, in Theorem 2.9, the quantity

θ := min
{
‖w‖ : ∀ 1 ≤ i ≤ k yi〈w, x(i)〉 ≥ 1

}
.

produces a vector w whose perpendicular hyperplane has the largest uniform distance a to
the vectors x(1), . . . , x(k). Since a = 1/ ‖w‖ = 1/θ, the quantity 1/θ is sometimes called the
margin of the vectors x(1), . . . , x(k), as it represents the “widest” symmetric slab through
the origin that can fit between all of the vectors.

2.1.1. Variants of Learning Linear Threshold Functions. In the case that the points cannot
be separated by a hyperplane, suppose we try to find a hyperplane that correctly classifies
the largest number of points. Unfortunately, this problem is known to be NP-hard [JP78]
[ABSS97, Theorem 4]. In the literature, this problem is called the Open Hemisphere Problem,
or Densest Hemisphere Problem.

Also, given that there is some half space that correctly classifies 99% of data points, it is
NP-hard to find a half space that correctly classifies 51% of data points [FGKP06]. Note
that correctly classifying 50% of data points is easy by just choosing any half space and
deciding which side to label +1. In fact, if NP ( TIME(2(logn)o(1)), no polynomial time
algorithm can distinguish between the following cases for learning half spaces with k input
points: (i) 1 − 2−Ω(

√
log k) fraction of points can be correctly classified by some halfspace,

or (ii) no more than (1/2) + 2−Ω(
√

log k) fraction of points can be correctly classified by any
halfspace [FGKP06, Theorem 4].

On the other hand, variants of the Perceptron algorithm do still learn linear threshold
functions efficiently when we start with a separating hyperplane and then change each label
independently with fixed probability less than 1/2 [BFKV98]. Under these assumptions,
efficient learning can then occur in the PAC model (discussed in Section 3) and in the Sta-
tistical Query Model. Also, when a small fraction of labels can be arbitrarily corrupted (the
so-called agnostic learning model) and some assumptions are made on allowable random
samples of inputs, linear threshold functions can be learned efficiently [KKMS08]. With
access to Gaussian samples, where a fraction of both samples and labels can be arbitrar-
ily corrupted (the so-called nasty noise model), linear threshold functions can be learned
efficiently [DKS18].

Instead of returning the final vector w that is output by the Perceptron algorithm, prac-
titioners use an average of all weight vectors w over all time steps. Supposedly this works
better than the Perceptron itself, and it is called the averaged perceptron.

Logistic regression is also said to work well in practice for classification tasks.

Remark 2.12 (Linear Programming). Let x(1), . . . , x(k) ∈ {−1, 1}n and let y1, . . . , yk ∈
{−1, 1} be given. Let A be the k × n matrix whose ith row is x(i). We can rewrite the goal
of Problem 2.4 (with t = 0) as finding w ∈ Rn

〈w, x(i)〉yi > 0, ∀ 1 ≤ i ≤ k.

Since the y1, . . . , yk ∈ {−1, 1} are fixed, this is a set of linear inequalities in w, i.e. finding the
existence of such a w is a linear program in n dimensions with k constraints. It is conceivable
to use a linear programming algorithm (such as the ellipsoid method or interior point method)
to solve Problem 2.4, however it would most likely be slower than the Perceptron Algorithm.
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On the other hand, the run time of the linear program would not depend on the geometry
of the points x(1), . . . , x(k), while our run time guarantee in Theorem 2.9 does depend on the
geometry of the points (and this worst-case guarantee can increase exponentially with n).

Exercise 2.13. Let n be a positive integer. Let cn be the number of boolean functions
f : {−1, 1}n → {−1, 1} that are linear threshold functions. This quantity is of interest since
it roughly quantifies the “expressive power” of linear threshold functions for the supervised
learning problem. It is known that

cn = 2n
2(1+o(1))

So, Problem 2.4 asks for the linear threshold function that fits the given data among a family
of functions of super-exponential size. For another perspective on the “expressive power” of
linear threshold functions, we will look into the VC-dimension in e.g. Proposition 4.11.

Using an inductive argument prove the weaker lower bound

cn ≥ 2n(n−1)/2.

(Hint: induct on n. If f : {−1, 1}n → {−1, 1}, consider f : {−1, 1}n+1 → {−1, 1} defined
(partially for now) so that f(x1, . . . , xn,−1) := f(x1, . . . , xn) for all (x1, . . . , xn) ∈ {−1, 1}n.
How many ways can we define f on the remaining “half” of the hypercube {−1, 1}n+1 such
that f is a linear threshold function?)

As we will discuss in Section 8, it is of interest to state the general learning problem for
compositions of linear threshold functions (i.e. neural networks). In this case, asymptotics for
the number of such functions were recently found in https://arxiv.org/pdf/1901.00434.pdf.

Exercise 2.14. Let a > 0. Let X(1), . . . , X(k) ∈ Rn be independent identically distributed
samples from a Gaussian random vector with mean (a, 0, . . . , 0) and identity covariance
matrix). Let X(k+1), X(k+2), . . . , X(2k) ∈ Rn be independent identically distributed samples
from a Gaussian random vector with mean (−a, 0, . . . , 0), where a > 0 is known. As in our
analysis of the perceptron algorithm, define

B := max
i=1,...,2k

∥∥X(i)
∥∥

Θ := max
{
‖w‖ : ∀ 1 ≤ i ≤ 2k yi〈w,X(i)〉 ≥ 1

}
.

Give some reasonable estimates for EB and EΘ as a function of a.

2.2. Embeddings and the “Kernel Trick”. In Remark 2.6, we noticed that exactly
learning a linear threshold function amounts to separating data points into two sets by a
separating hyperplane. However, some natural data sets may be sortable into two categories
that cannot be separated by a hyperplane. For this reason, practitioners using the Perceptron
Algorithm often “preprocess” their data so that it is sensibly separable by a hyperplane. The
preprocessing can be described as a function φ : A → C, where A,C are sets. (Recall that
we phrased Problem 2.1 as determining an unkonwn function f : A → B.) The function
φ : A→ C is sometimes called a feature map.

Problem 2.15 (Supervised Learning Problem for Linear Threshold Functions,
with Kernel Trick). Let f : {−1, 1}n → {−1, 1} be an unknown linear threshold function.
Let x(1), . . . , x(k) ∈ {−1, 1}n and let y1, . . . , yk ∈ {−1, 1}. It is known that

f(x(i)) = yi, ∀ 1 ≤ i ≤ k.
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The goal of the problem is to find an inner product space C with inner product 〈·, ·〉C , an
embedding φ : {−1, 1}n → C, t ∈ R and w ∈ C such that

sign(〈w, φ(x(i))〉C − t) = yi, ∀ 1 ≤ i ≤ k.

As above, we assume that Problem 2.15 can be solved when we apply the following modified
Perceptron Algorithm.

Algorithm 2.16 (Kernel Perceptron Algorithm, Version 1).

• Define w(1) := 0 ∈ C and let s := 1
• If there exists some 1 ≤ i ≤ k such that yi 6= sign(〈w(s), φ(x(i))〉, i.e. a mis-

classification occurs, define

w(s+1) := w(s) + yiφ(x(i)).

• Increase the value of s by one. Repeat the previous step until no such i exists.
• Output w := w(s).

Sometimes the embedding φ may be difficult to compute or write explicitly. In such cases,
it might be desirable to only define φ implicitly. In such a case, for all 1 ≤ i ≤ k we
only need to define φ(x(i)) to be an element of some inner product space. And if we can
rewrite the algorithm so that it only uses the values of the inner products, 〈φ(x(i)), φ(x(j))〉C
∀ 1 ≤ i, j ≤ k, then we need only specify the values of these inner products. We then use
the following equivalence.

Exercise 2.17. Let M be a k × k real symmetric matrix. Then M is positive semidefinite
if and only if there exists a real k × k matrix R such that

M = RRT .

In either case, if r(i) denotes the ith row of R, we have

mij = 〈r(i), r(j)〉, ∀ 1 ≤ i, j ≤ k.

That is, the values of the inner products 〈φ(x(i)), φ(x(j))〉C can be equivalently specified
as the values mij of a real symmetric positive semidefinite matrix. More generally, we have
the following infinite-dimensional result from 1909.

Theorem 2.18 (Mercer’s Theorem). Let µ be a Borel measure on Rn such that the mea-
sure of any open set in Rn is positive. We denote L2(µ) := {f : Rn → R :

∫
Rn |f(x)|2 dµ(x) <

∞}, and we equip L2(µ) with the standard inner product
∫
Rn f(x)g(x)dµ(x) defined for any

f, g ∈ L2(µ). Let m : Rn × Rn → [0,∞) be a continuous symmetric function (m(x, y) =
m(y, x) for all x, y ∈ Rn) such that, for all p ≥ 1, for all z(1), . . . , z(p) ∈ Rn, for all
β1, . . . , βp ∈ R we have the positive semi-definiteness condition

p∑
i,j=1

βiβjm(z(i), z(j)) ≥ 0,

∫
Rn

∫
Rn
|m(x, y)|2 dµ(x)dµ(y) <∞.

Then there exists an orthonormal basis {ψi}∞i=1 of L2(µ) and a sequence of nonnegative real
numbers {λi}∞i=1 such that m is equal to the following series, which converges absolutely
pointwise:

m(x, y) =
∞∑
i=1

λiψi(x)ψi(y), ∀x, y ∈ Rn.
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Exercise 2.19. Let µ be a Borel measure on Rn such that the measure of any open set in
Rn is positive. Let m : Rn ×Rn → R be continuous with

∫
Rn
∫
Rn |m(x, y)|2 dµ(x)dµ(y) <∞.

Show that the following two positive semidefinite conditions on m are equivalent:

• ∀ p ≥ 1, for all z(1), . . . , z(p) ∈ Rn, for all β1, . . . , βp ∈ R we have
p∑

i,j=1

βiβjm(z(i), z(j)) ≥ 0.

• ∀ f ∈ L2(µ), we have∫
Rn

∫
Rn
f(x)f(y)m(x, y)dµ(x)dµ(y) ≥ 0.

From either condition, we should see that the converse of Mercer’s Theorem holds. We
should also be able to deduce various properties of positive semidefinite (PSD) kernels. For
example, a nonnegative linear combination of PSD kernels is PSD.

So, define `2 := {(βi)∞i=1 :
∑∞

i=1 β
2
i <∞} with the standard inner product 〈(βi)∞i=1, (γi)

∞
i=1〉 :=∑∞

i=1 βiγi and φ : Rn → `2 by

φ(x) := {
√
λi ψi(x)}∞i=1, ∀x ∈ Rn,

then

〈φ(x), φ(y)〉 =
∞∑
i=1

λiψi(x)ψi(y) = m(x, y), ∀x, y ∈ Rn.

That is, Theorem 2.18 is an infinite-dimensional generalization of Exercise 2.17. Note that
each ψi can be nonlinear, and in general the φ maps we use will be nonlinear maps.

Recall also that the Spectral Theorem 1.12 for real symmetric matrices k× k matrices M
says there exists a real diagonal D and an orthogonal Q such that

M = QTDQ

We can write this in vector form to more closely match Theorem 2.18. For any 1 ≤ p ≤ k,
let λp denote the pth diagonal entry of D and let ψ(p) ∈ Rk denote the kth row of Q. Then

mij =
k∑
p=1

λpψ
(p)
i ψ

(p)
j , ∀ 1 ≤ i, j ≤ k.

The function m(x, y) (or the matrix mij) is called a kernel.
Also, since all countable Hilbert spaces are isometric, we can and will assume that C = `2

with the standard inner product, which we denote as 〈·, ·〉. In order to rewrite Algorithm
2.16, we need to express the algorithm using only 〈φ(x(i)), φ(x(j))〉 terms. To this end, for
all 1 ≤ i ≤ k, let αi be the number of times that i ∈ {1, . . . , k} is selected in step two of
the algorithm. That is, αi is the number of times that x(i) is “mis-classified” within the
algorithm.

Let s ≥ 1. Suppose at step s of the algorithm, x̃(s) ∈ {x(1), . . . , x(k)} is selected. For
any s ≥ 1, induction implies that w(s+1) is a linear combination of φ(x̃(1)), . . . , φ(x̃(s)) in
Algorithm 2.16:

w(s+1) =
s∑
j=1

yjφ(x̃(s)). (∗)
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So, at the next step of the algorithm, we can compute

sign(〈w(s+1), φ(x̃(s+1))〉) = sign
( s∑
j=1

yj〈φ(x̃(j)), φ(x̃(s))〉
)

=: sign
( k∑
j=1

yjm(x̃(j), x̃(i))
)
.

Suppose the algorithm terminates after s steps. As mentioned above, for all 1 ≤ j ≤ k, let
αj be the number of times that φ(x(j)) appears in the sum (∗). Then we can rewrite (∗) as

w := w(s+1) =
k∑
j=1

αjyjφ(x(j)).

We then plug in any x in the span of x(1), . . . , x(k) so that

sign(〈w(k+1), φ(x)〉) := sign(
k∑
j=1

αjyjm(x(j), x)).

In summary, we can rewrite Algorithm 2.16 in the following way.

Algorithm 2.20 (Kernel Perceptron Algorithm, Version 2).
Let m : Rn×Rn → [0,∞) be a positive-definite function (kernel) satisfying the assumptions

of Mercer’s Theorem 2.18.

• Define α1 := 0, . . . , αk := 0 and let s := 1.

• If there exists some 1 ≤ i ≤ k such that yi 6= sign
(∑k

j=1 αjyjm(x̃(j), x̃(i))
)

, i.e. a

mis-classification occurs, then increase the value of αi by one.
• Increase the value of s by one. Repeat the previous step until no such i exists.
• Output the function f(x) := sign(

∑k
j=1 αjyjm(x(j), x)), valid for any x ∈ Rn.

For some rigorous guarantees of a “kernel trick” in the context of a clustering-type problem,
see [LOGT12].

Exercise 2.21. For each kernel function m : Rn×Rn → [0,∞) below, find an inner product
space C and a map φ : Rn → C such that

m(x, y) = 〈φ(x), φ(y)〉C , ∀x, y ∈ Rn.

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer’s
Theorem.

• m(x, y) := 1 + 〈x, y〉 ∀ x, y ∈ Rn.
• m(x, y) := (1 + 〈x, y〉)d ∀ x, y ∈ Rn, where d is a fixed positive integer.
• m(x, y) := exp(−‖x− y‖2).

Hint: it might be helpful to consider d-fold iterated tensor products of the form x⊗d =
x⊗ x⊗ · · · ⊗ x, along with their corresponding inner products.

2.3. Optional: Proof of Mercer’s Theorem.

Proof of Mercer’s Theorem 2.18. Consider the operator on L2(µ) defined by

T (f)(x) :=

∫
Rn
f(y)m(x, y)dµ(y), ∀x ∈ Rn, ∀ f ∈ L2(µ)

By the Cauchy-Schwarz inequality and by assumption on m, if f ∈ L2(µ), then T (f) ∈ L2(µ),
so that T : L2(µ) → L2(µ), with ‖T‖2 ≤

∫
Rn |m(x, y)|2 dµ(x)dµ(y), where ‖T‖ denotes the
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operator norm. We will show that T is a compact operator, i.e. T (B(0, 1)) has compact
closure in L2(µ) with respect to the norm topology, where B(0, 1) := {f ∈ L2(µ) : ‖f‖ ≤ 1},
and ‖f‖ := (

∫
Rn |f(x)|2 dµ(x))1/2. When f, g ∈ L2(µ), we denote f ⊗ g : Rn × Rn → R as

the function (f ⊗ g)(x, y) := f(x)g(y). Let {φi}∞i=1 be an orthonormal basis of L2(µ). Then
{φi⊗φj}∞i,j=1 is an orthonormal basis of L2(µ×µ). Since m ∈ L2(µ×µ), m can be expressed
as a linear combination of this orthonormal basis, in the sense that

lim
p→∞

∥∥∥∥∥m− ∑
i+j≤p

〈m,φi ⊗ φj〉φi ⊗ φj

∥∥∥∥∥ = 0. (∗)

So, for any p ≥ 1, define the following operator on L2(µ)

Tp(f)(x) :=

∫
Rn
f(y)

( ∑
i+j≤p

〈m,φi ⊗ φj〉(φi ⊗ φj)(x, y)
)
dµ(y), ∀x ∈ Rn, ∀ f ∈ L2(µ).

By (∗), T is the limit of Tp in the sense that

lim
p→∞

sup
f∈L2(µ) : ‖f‖≤1

‖(T (f)− Tp(f))‖ = 0. (∗∗)

Also, by its definition, each Tp has finite-dimensional range, hence it is a compact operator.
The operator T is compact if: given any norm-bounded sequence {fi}∞i=1 ∈ L2(µ), the
sequence {Tfi}∞i=1 has a convergent subsequence. So, (∗∗) implies that T itself is compact by
the following diagonalization argument. Since T1 is compact, there is a subsequence {fi,1}∞i=1

of {fi}∞i=1 such that {T1fi,1}∞i=1 converges. Since T2 is compact, there is a subsequence
{fi,2}∞i=1 of {fi,1}∞i=1 such that {T2fi,2}∞i=1 converges. And so on. Then let gi := fi,i for all
i ≥ 1. Fix i, j ≥ 1 and then let p ≥ 1.

‖T (gi)− T (gj)‖ ≤ ‖T (gi)− Tp(gi)‖+ ‖Tp(gi)− Tp(gj)‖+ ‖Tp(gj)− T (gj)‖ .

The first and third terms become small when p is large by (∗∗). The middle term can be
made small by choosing p to be the minimum of i and j. In conclusion for all ε > 0, there
exists q ≥ 1 such that, for all i, j ≥ q, we have ‖T (gi)− T (gj)‖ < ε. That is, {T (gi)}∞i=1 is a
Cauchy sequence, hence convergent.

So, T itself is a compact operator, and it is positive semidefinite by Exercise 2.19. The
Riesz Theory of Compact operators then applies (Theorem 10.38(4),(6).) That is, there exists
a sequence of nonnegative eigenvalues {λi}∞i=1 and an orthonormal system of eigenfunctions
{ψi}∞i=1 such that

Tf =
∞∑
i=1

λi〈f, ψi〉ψi, ∀ f ∈ L2(µ).

We now note that m is nonnegative on its diagonal. We show this by contradiction. Sup-
pose m(x, x) < 0 for some x ∈ Rn. Since m is continuous, there exists an open neighborhood
U of x such that m is negative on U × U . By assumption, µ(U) > 0. So, if f := 1U , we
would have

0 ≤ 〈Tf, f〉 =

∫
U

∫
U

m(x, y)dµ(x)dµ(y) < 0,

a contradiction. For any p ≥ 1, define
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Sp(f) :=

p∑
i=1

λi〈f, ψi〉ψi ∀ f ∈ L2(µ).

And define the corresponding kernel

mp(x, y) :=

p∑
i=1

λiψi(x)ψi(y), ∀x, y ∈ Rn.

Then T − Sp is also a positive semidefinite operator, so the corresponding kernel m − mp

also has a nonnegative diagonal. That is, for all p ≥ 1,
p∑
i=1

λi(ψi(x))2 ≤ m(x, x).

The series on the left is therefore absolutely convergent as p→∞. By the Cauchy-Schwarz
inequality, the series defining mp is also absolutely convergent as p → ∞, for all x, y ∈ Rn.
Denote

m(x, y) := lim
p→∞

mp(x, y) =
∞∑
i=1

λiψi(x)ψi(y), ∀x, y ∈ Rn.

It remains to show that m = m. To see this, note that the operator with kernel m has
the same eigenvalues and eigenfunctions as T . Therefore T has kernel m, as desired. �

3. Probably Approximately Correct (PAC) Learning

Learning involves data from the real world, and real world data is noisy. To account for
this, Valiant introduced the PAC learning model in 1984.

Problem 3.1 (Supervised PAC Learning Problem). Let A,B be sets. Let f : A→ B
be an unknown function. The goal of the learning problem is to determine the function f on
all of A using a small number of randomly drawn values of f on A. Let 0 < ε, δ < 1/2 and
let P be a probability law on A. We are given access to ε, δ and to random samples from
P. (The distribution P may or may not be known, depending on the problem at hand.) If
x ∈ A is a random sample from P, the pair (x, f(x)) is also known.

The goal of the problem is the following. With probability at least 1− δ (with respect to
randomly drawn samples, drawn according to P), output a function g : A→ B such that

P(f(x) 6= g(x)) < ε.

That is, the hypothesis g is probably (with probability at least 1− δ) approximately (up to
error ε) correct.

We say a subset of functions F ⊆ {f : A → B} is PAC Learnable if there exists an
algorithm such that, for any probability distribution P on A, for any 0 < ε, δ < 1/2, the
algorithm achieves the above goal.

In the case A = {−1, 1}n and B = {−1, 1}, we say that F is efficiently PAC Learnable
if F is PAC Learnable, and the algorithm has a run time that is polynomial in n, 1/ε, 1/δ.
When every f ∈ F has a positive integer “size” associated to it, we require the algorithm
to have run time polynomial in n, 1/ε, 1/δ and in the size of the f , where f ∈ F is the
unknown function being learned by the algorithm.

23



As discussed in Section 2, Problem 3.1 is too general to be tractable for arbitrary F . In
the literature, the family of functions F is often called a concept class.

We include the number of samples of P in the run time of a PAC learning algorithm. So,
being efficiently PAC Learnable requires not taking too many samples from P.

One criticism of PAC learning is that it cannot account for adversarial noise. That is,
samples are assumed to independent and identically distributed, so any noise in the data is
modeled as i.i.d. noise. On the other hand, one could imagine an adversary corrupts some
fraction of the samples arbitrarily. Such noise be outside the scope of the PAC learning model.
For this reason, some contemporary investigations in machine learning have investigated
more general adversarial noise models.

3.1. Learning Boolean Conjunctions. Our first example of a class of PAC learnable
functions is boolean conjunctions. For convenience, we use {0, 1} instead of {−1, 1} in this
subsection.

Definition 3.2 (Boolean Conjunctions). Let I, J ⊆ {1, . . . , n}. A boolean conjunction
is a function f : {0, 1}n → {0, 1} of the form

f(x1, . . . , xn) =
∏
i∈I

xi
∏
j∈J

(1− xj), ∀ (x1, . . . , xn) ∈ {0, 1}n.

Example 3.3. The function f where f = 1 only when x1 = 1, x3 = 0 and x4 = 1 can be
written as

f(x1, . . . , xn) := x1(1− x3)x4, ∀ (x1, . . . , xn) ∈ {−1, 1}n.

When f is a boolean conjunction, the set {x ∈ {0, 1}n : f(x) = 1} can be understood
geometrically as an intersection of coordinate halfspaces. Alternatively, if we think of 0
as logical “false” and 1 as “true,” a conjunction f is then a combination of logical AND
operations on a set of variables together with their negations.

Theorem 3.4. The class of boolean conjunctions is efficiently PAC learnable.

Proof. Let f be an unknown boolean conjunction of the form f(x1, . . . , xn) =
∏

i∈I xi
∏

j∈J(1−
xj), for some I, J ⊆ {1, . . . , n}. We first “guess” a hypothesis g where I = J = {1, . . . , n},
so that

g(x1, . . . , xn) =
n∏
i=1

xi(1− xi).

Initially, g = 0 on {−1, 1}n. Suppose we sample y = (y1, . . . , yn) ∈ {−1, 1}n from P, and we
find that f(y) = 1. In such a case, we update g to agree with f . That is, for each 1 ≤ i ≤ n,
if yi = 0, delete the xi term from g, and if yi = 1, delete the (1 − xi) term from g. We
repeat this procedure. For any k ≥ 1, let gk denote the hypothesis gk after k iterations of
the algorithm, and let g0 := g. Note that each deleted term does not appear in the formula
for f (e.g. if yi = 0 and f(y) = 1, then yi cannot appear in the formula of f). So, for any
k ≥ 1, any term in f will be contained in gk. Let us then try to find the probability that
there is a term in gk not appearing in f .

Let 1 ≤ i ≤ n, and consider a term of the form z := xi or z := 1− xi. Suppose z appears
in gk but not in f . The term z will be deleted from gk only when we have a sample where
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z = 0 and f = 1. So, the probability that term z is deleted from gk in one iteration of the
algorithm is

p(z) := P(f(y) = 1 and z = 0).

For any k ≥ 1, define
εk := P(f(y) 6= gk(y)).

Since f 6= gk only when f = 1, the union bound gives

εk = P(f(y) = 1 and gk(y) = 0)

= P(f(y) = 1 and some term in gk is zero) ≤
∑

terms z in gk

p(z). (∗)

Let ε > 0. Suppose p(z) < ε/(2n) for all terms z in gk. Since gk has at most 2n terms,
we would then have εk ≤ 2nε/(2n) = ε. Let Ck be the event that ∃ a term z in gk with
p(z) > ε/(2n) and such that z does not appear in f . It remains to bound P(Ck).

Let z be a term in gk that is not in f . The probability that z appears in gk is at most
(1 − p(z))k, since each iteration of the algorithm gives us an independent sample from P.
Then by the union bound (since at most 2n terms appear in gk)

P(Ck) ≤ 2n
(

1− ε

2n

)k
. (∗∗)

So, if δ > 0, we choose k such that

2n
(

1− ε

2n

)k
≤ δ.

Using 1 − t ≤ e−t for all t ∈ [0, 1], we choose k so that 2ne−εk/(2n) ≤ δ, i.e. −εk ≤
2n log(δ/(2n)), i.e.

k ≥ 2n

ε
log(2n/δ).

In summary, if the algorithm uses more than 2n
ε

log(2n/δ) samples, then with probability
at least 1− δ by (∗∗), the hypothesis gk of the algorithm satisfies P(f 6= gk) ≤ ε by (∗). �

Exercise 3.5. Show that the set of conjunctions is contained in the set of linear threshold
functions. That is, given a boolean conjunction f : {0, 1}n → {0, 1}, find w ∈ Rn, t ∈ R such
that

f(x) = sign(〈w, x〉 − t), ∀x = (x1, . . . , xn) ∈ {0, 1}n.

3.2. Learning DNF Formulas. Surprisingly, the following slightly larger class of natural
functions that contains boolean conjunctions is not efficiently PAC learnable, in its own
function class.

Definition 3.6 (3-Term DNF Formula). Let f1, f2, f3 : {0, 1}n → {0, 1} be boolean con-
junctions. A 3-Term DNF Formula is a function f : {0, 1}n → {0, 1} of the form

f(x) = max(f1(x), f2(x), f3(x)), ∀x ∈ {−1, 1}n.

When f is a 3-term DNF formula, the set {x ∈ {0, 1}n : f(x) = 1} can be understood
geometrically as a union of 3 conjunctions (which are themselves intersections of coordinate
half spaces). Alternatively, if we think of 0 as logical “false” and 1 as “true,” f is then a
3-term logical OR operation applied to AND operations, on a set of variables together with
their negations.
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Theorem 3.7. If RP 6= NP, then the class of 3-term DNF formulae is not efficiently PAC
learnable, in its own function class.

Remark 3.8. P ⊆ RP ⊆ NP, so it could technically occur that P 6= NP while RP = NP.
However it is widely believed that P = RP.

The above Theorem in [KV94, Section 1.4] says that learning 3-term DNF formulae is not
possible to do efficiently, in the class of 3-term DNF formula. However, it is still possible to
learn 3-term DNF formulae, when we consider them in a larger class of functions. In fact,
this is possible, as we now outline.

Let a, b, c, d ∈ {0, 1}. Using the distributive property

max(ab, cd) = max(a, c) max(a, d) max(b, c) max(b, d),

we can rewrite any 3-term DNF formula as a 3-term CNF formula:

max(f1(x), f2(x), f3(x)) =
∏

terms z1 in f1
terms z2 in f2
terms z3 in f3

max(z1, z2, z3).

(A 3-term CNF formula is a function on n variables of the form on the right.) Each term in
this large product is treated as its own variable (among (2n)3 possible variables), so that the
formula on the right is then interpreted as a conjunction on 8n3 variables. We then apply
the algorithm of Theorem 3.4 to learn the conjunction, and then rewrite the conjunction as
a 3-term CNF formula. For more details see [KV94, Section 1.5]. This argument implies the
following two things:

Theorem 3.9. The class of 3-term CNF formulae is efficiently PAC learnable.

Corollary 3.10. The class of 3-term DNF formulae is efficiently PAC learnable when rep-
resented as 3-term CNF formulae. That is, the DNF function class is considered as a subset
of the larger class of 3-term CNF formulae.

This corollary is loosely analogous to the discussion of the Minimum Vertex Cover Problem
after 1.11. Even though it might be hard to optimize a function on a small domain, enlarging
the domain can make it easier to optimize the function (while changing our interpretation
of the meaning of the optimum).

Remark 3.11. In the PAC learning framework, we always assume that the hypothesis class
F is polynomially evaluatable. That is, there is an algorithm such that, for any f ∈ F
and for any x ∈ {0, 1}n, the value f(x) is output in time polynomial in n and in the size of
f .

It turns out the above argument can be generalized, so that, for any k ≥ 2, k-term DNF
formulae are efficiently PAC learnable within the class of k-CNF formulae. Though, as we
can imagine, the number of variables involved in passing between DNF and CNF formula
seems to be (2n)k. So, if k itself depends on n (e.g. k is a polynomial in n), then the above
argument no longer gives an efficient algorithm.

The following is a well-known open problem since the introduction of PAC learning in
1984: are DNF formula of polynomial size (i.e. with nO(1) terms) PAC learnable (within
some larger function class)?
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It is possible to PAC learn linear threshold functions, but we will postpone this discussion
to Section 4. The story for more general learning models of halfspaces is more complicated.
In the agnostic learning model, the learner has access to a random sample from A× B,
i.e. there is no a priori functional relationship that is assumed between A and B. The goal
is then to find a g ∈ F minimizing P(g(X) 6= Y ), where (X, Y ) is the random sample from
A × B. (We can think intuitively think of this model as having a target function f with
a fraction of its labels randomly corrupted.) In this setting, which is slightly more general
than PAC learning, the agnostic learning of linear threshold functions is possible under some
assumptions on the distribution P, when the functions are considered in the larger class of
polynomial threshold functions [KKMS08]. However, agnostic learning of linear threshold
functions in the class of linear threshold functions is hard [FGRW12]. Moreover, (recalling
Exercise 3.5), agnostic learning of conjunctions in the class of linear threshold functions
is hard [FGRW12]. With access to Gaussian samples, where a fraction of both samples
and labels can be arbitrarily corrupted (the so-called nasty noise model), linear threshold
functions can be learned efficiently [DKS18].

Remark 3.12. When a PAC learning algorithm for a class of functions F outputs a function
in the class F , the algorithm is called proper. Otherwise, the algorithm is called improper.

3.3. Boosting. In this section, we investigate a modification of the PAC learning model,
where with high probability the algorithm is only guaranteed to classify slightly more than
50% of examples correctly. The main question is: can we somehow “boost” the performance
of a “weak” learning algorithm like this to get “stronger” PAC learning algorithm.

Problem 3.13 (Supervised Weak Learning Problem). Let A,B be sets. Let f : A→ B
be an unknown function. The goal of the learning problem is to determine the function f on
all of A using a small number of randomly drawn values of f on A. Let 0 < ε, δ < 1/2 and
let P be a probability law on A. We are given access to ε, δ and to random samples from
P. (The distribution P may or may not be known, depending on the problem at hand.) If
x ∈ A is a random sample from P, the pair (x, f(x)) is also known.

The goal of the problem is the following. With probability at least 1− δ (with respect to
randomly drawn samples, drawn according to P), output a function g : A→ B such that

P(x ∈ A : f(x) 6= g(x)) <
1

2
− ε.

That is, the hypothesis g is probably (with probability at least 1 − δ) slightly better than
random guessing (since a random assignment g would have probability of mis-classification
at most 1/2). We emphasize that the function g can depend on the random sample.

We say a subset of functions F ⊆ {f : A→ B} is ε-weak learnable if there exists ε > 0
and an algorithm such that, for any probability distribution P on A, there exists ε > 0 such
that, for any 0 < δ < 1/2, the algorithm achieves the above goal.

In the case A = {−1, 1}n and B = {−1, 1}, we say that F is efficiently weak learnable
if F is weak learnable, and the algorithm has a run time that is polynomial in n, 1/ε and
1/δ.

In the literature, the family of functions F is often called a concept class.
As noted in Section 2.1.1, given that there is some half space that correctly classifies 99%

of data points with B = {−1, 1}, it is hard to find a half space that correctly classifies
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51% of data points [FGKP06]. Note that correctly classifying 50% of data points is easy
by just choosing any half space and deciding which side to label +1. However, this result
is not directly relevant in the PAC model, since if we are finding an approximation to a
target function (such as a linear threshold function), then it is assumed that all points can
be correctly classified. In the case that B has k > 2 values, random guessing only correctly
classifies 1/k sample points, so an ε-weak learning algorithm with ε small is a rather strong
assumption when compared to the case k = 2.

Suppose that we can weakly learn some concept class. Using our intuition from e.g. the
Law of Large Numbers, we know that if we can double our money by betting on a game that
has a 51% chance of success, then we can earn money with high probability by betting on
independent repetitions of the game. Similarly, we can try to sample the weak learner many
times and then take a majority vote of the output, thereby “boosting” the weak learner to
a much “stronger” (PAC) learning [Sch90]. For an exposition of this argument, see [KV94,
Chapter 4], where a nested sequence of majority votes is used, rather than a single majority
function. Here we instead focus on a simpler and more practical boosting procedure, albeit
without an explicit guarantee of PAC learning.

In this proof, we denote

∆k := {v ∈ Rk :
k∑
i=1

vi = 1, vi ≥ 0, ∀ 1 ≤ i ≤ k}.

Given the samples x(1), . . . , x(k) ∈ A, labels y1, . . . , yk ∈ {−1, 1}, and given v ∈ ∆k,
consider the probability law Pv on A defined so that Pv(x

(i)) = vi for all 1 ≤ i ≤ k.

Algorithm 3.14 (Adaptive Boosting (AdaBoost) [FS97]). The input is 0 < ε < 1/2,
an ε-weak learning algorithm, a number of iterations t, samples x(1), . . . , x(k) ∈ A, and labels
y1, . . . , yk ∈ {−1, 1}. Initialize v(1) ∈ ∆k, with v(1) := 1

t
(1, . . . , 1).

For each 1 ≤ s ≤ t, do the following.

• Using the ε-weak learning algorithm on input Pv(s) , get hypothesis gs : A→ {−1, 1}.
(We assume the random samples given to the weak learning algorithm are indepen-
dent of each other for all 1 ≤ s ≤ t.)

• Let γs :=
∑k

i=1 v
(s)
i 1{gs(x(i)) 6=yi}. (This is the Pw probability that the weak learner mis-

classifies its input, so it is at most 1/2− ε with Pw probability close to 1. Similarly,
the following quantity is typically less than one.)
• Let βs := γs

1−γs . (We may assume γs > 0 since if γs = 0, the learner makes no

mistakes, so that γ1 = 0, so we do not need to apply the boosting algorithm at all.)
(So, βs is the ratio of the Pw probability of correct classification and the probability
of mis-classification.)

• Define v
(s+1)
i :=

v
(s)
i β

[1{gs(x(i))=yi}
]

s∑k
j=1 v

(s)
j β

[1{gs(x(j))=yj}
]

s

, ∀ 1 ≤ i ≤ k.

Output the hypothesis g that is the “weighted majority vote” of each round of hypothesis:

g(x) := sign
( t∑
s=1

log
( 1

βs

)
gs(x)

)
.
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If the weak learner makes few mistakes, then γs is close to 0, as is βs, so log(1/βs) is large.
So the “weight” of each “voter” is directly related to its number of correct classifications.
Also, if the weak learner makes many mistakes, then γs is close to 1, βs is much larger than
1, so log(1/βs) is negative, i.e. g makes the opposite recommendation of gs. That is, the
boosting algorithm still gains something when the weak learner is very wrong, and this is
reflected in the bound below.

Theorem 3.15. Let g be the output of Algorithm 3.14. Define εs := 1
2
−γs for all 1 ≤ s ≤ t.

Then the average number of mis-classifications of g satisfies

1

k

∣∣{1 ≤ i ≤ k : g(x(i)) 6= yi}
∣∣ ≤ e−2

∑t
s=1 ε

2
s .

Exercise 3.16. Explain why taking the expected value of this inequality does not guarantee
PAC learning.

Proof. For any β ≥ 0 and for any a ∈ [0, 1], we have βa ≤ 1 − (1 − β)a. (To see this, note
that the second derivative in a is positive on the left, so that a 7→ βa is convex, and both
quantities agree when a = 0 and when a = 1. So convexity implies the inequality.) Now, let

zs :=
k∑
j=1

v
(s)
j β

[1{gs(x(j))=yj}
]

s , ∀ 1 ≤ s ≤ t.

Using this inequality and the definition of γs we have

zs ≤
k∑
j=1

v
(s)
j [1− (1− βs)1{gs(x(j))=yj} = 1− (1− βs)(1− γs). (‡)

By induction, note that, for all 1 ≤ i ≤ k,

v
(t+1)
i = v

(1)
i

t∏
s=1

β
[1{gs(x(j))=yj}

]

s

zs
. (∗)

If the output g mis-classifies x(i) for some 1 ≤ i ≤ k, then

yi

t∑
s=1

log
( 1

βs

)
gs(x

(i)) ≤ 0 ⇔
t∏

s=1

β−yigs(x
(i))

s ≤ 1

⇔
t∏

s=1

β
[1−2·1{gs(x(i))=yi}

]

s ≤ 1

⇔
t∏

s=1

β
[1{gs(x(i))=yi}

]

s ≥
( t∏
s=1

βs

)1/2

. (∗∗)
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Using that w(t+1) ∈ ∆k,

t∏
s=1

zs =
k∑
i=1

w
(t+1)
i

t∏
s=1

zs
(∗)
=

k∑
i=1

w
(1)
i

t∏
s=1

β
[1{gs(x(i))=yi}

]

s =
1

k

k∑
i=1

t∏
s=1

β
[1{gs(x(i))=yi}

]

s

≥ 1

k

∑
i : g(x(i))6=yi

t∏
s=1

β
[1{gs(x(i))=yi}

]

s

(∗∗)
≥ 1

k

∑
i : g(x(i))6=yi

( t∏
s=1

βs

)1/2

=
1

k

∣∣{1 ≤ i ≤ k : g(x(i)) 6= yi}
∣∣ ( t∏

s=1

βs

)1/2

.

That is,

1

k

∣∣{1 ≤ i ≤ k : g(x(i)) 6= yi}
∣∣ ≤ t∏

s=1

zs√
βs

(‡)
≤

t∏
s=1

[1− (1− βs)(1− γs)]√
βs

.

Substituting βs = γs/[1−γs] (which happens to minimize the right side over all such choices
of βs) concludes the proof since the sth term is then

β−1/2
s [1− (1− 2γs)] = β−1/2

s 2γs = 2
√
γs(1− γs) = 2

√
((1/2)− εs)((1/2) + εs) =

√
1− 4ε2

s.

The final inequality follows since 1− a ≤ e−a for all a ∈ R. �

Remark 3.17. At each iteration of Algorithm 3.14, the weak learner fails with probability
at most δ. So,the weak learner succeeds in all t iterations with probability at least 1 − δt,
by the union bound.

In Theorem 3.15, the quantity

1

k

∣∣{1 ≤ i ≤ k : g(x(i)) 6= yi}
∣∣ =

1

k

k∑
i=1

1{g(x(i))6=yi}

is called the empirical risk, since it gives the average error on the given sample. We would
ideally like to bound P(g(X) 6= f(X)), but since we do not have access directly to the random
variable X that generates the samples x(1), . . . , x(k), we cannot compute P(g(X) 6= f(X))
exactly. We will discuss this issue in more detail In Section 6.

In the case that f : A → B is the unknown function with B finite and |B| > 2, there are
a few ways we can modify Algorithm 3.14; here is one way.

Algorithm 3.18 (Multi-Class Adaptive Boosting (AdaBoost.M1) [FS97]). The input
is 0 < ε < 1/2, an ε-weak learning algorithm, a number of iterations t, samples x(1), . . . , x(k) ∈
A, and labels y1, . . . , yk ∈ {1, . . . , p}. Initialize v(1) ∈ ∆k, with v(1) := 1

t
(1, . . . , 1).

For each 1 ≤ s ≤ t, do the following.

• Using the ε-weak learning algorithm on input Pv(s) , get hypothesis gs : A→ {1, . . . , p}.
(We assume the random samples given to the weak learning algorithm are indepen-
dent of each other for all 1 ≤ s ≤ t.)

• Let γs :=
∑k

i=1 v
(s)
i 1{gs(x(i))6=yi}.

• Let βs := γs
1−γs .
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• Define v
(s+1)
i :=

v
(s)
i β

[1{gs(x(i))=yi}
]

s∑k
j=1 v

(s)
j β

[1{gs(x(j))=yj}
]

s

, ∀ 1 ≤ i ≤ k.

Output the hypothesis g that is the “weighted plurality vote” of each round of hypothesis:

g(x) := argmaxy∈{1,...,p}

t∑
s=1

log
( 1

βs

)
1{gs(x)=y}.

3.4. Occam’s Razor. Let A = ∪∞n=1An be a set, let F = ∪∞n=1Fn be a set of functions from
A to B, and let G = ∪∞n=1Gn be a set of functions from A to B.

Let f ∈ F . A labelled sample S with cardinality m > 0 sampled according to f is a set
of ordered pairs

{(x(1), f(x(1)), . . . , (x(m), f(x(m)) : x(i) ∈ A, ∀1 ≤ i ≤ m}.
We assume in this section that the size of g ∈ G and f ∈ F , denoted size(·), is well-defined
to be the bit-length of an encoding of these functions (e.g. ∃ a function φF : F → {0, 1}N
such that [φF(f)]size(f)+k = 0 for all k ≥ 1. That is, the binary encoding of f only uses
the coordinates from 1 to size(f).) We say that g ∈ G is consistent with f ∈ F on S if
f(x(i)) = g(x(i)) for all 1 ≤ i ≤ m.

Definition 3.19 (Occam Algorithm). Let α ≥ 0 and let 0 ≤ β < 1 be constants. We
say that L is an (α, β)-Occam algorithm for F using G if, for n ≥ 1 and for any input
sample S of cardinality m labelled according to f ∈ Fn, L outputs a hypothesis g ∈ G such
that

• g is consistent with f , and
• size(g) ≤ (n · size(f))αmβ.

We say that L is an efficient (α, β)-Occam algorithm if its run time is at most a polynomial
in n,m and size(f).

Theorem 3.20 (Occam’s Razor). Let L be an efficient (α, β)-Occam algorithm for F
using G. Let 0 < ε, δ < 1, let f ∈ Fn, and let P be a probability law on A. Then there is a
constant a > 0 such that, if L is given as input a random sample S of m examples sampled
according to f (and P), with

m ≥ a
(1

ε
log(1/δ) +

((n · size(f))α

ε

) 1
1−β
)
.

Then with probability at least 1− δ, the output g of L satisfies P(f(x) 6= g(x)) < ε, and the
run time of L is at most polynomial in n, size(f), 1/ε and 1/δ.

In the following result, we assume that Gn = ∪∞m=1Gn,m, and when the algorithm L has
input a sample S of cardinality m, the output is g ∈ Gn,m.

Theorem 3.21 (Occam’s Razor, Cardinality Version). Let L be an algorithm such
that, for any n ≥ 1 and for any f ∈ Fn, if L is given as input a random sample S of m
examples drawn according to f , then L runs in time at most polynomial in n, m and size(f),
and outputs g ∈ Gn,m that is consistent with f on S. Then there is a constant b > 0 such
that, for any n, for any probability law P on A, and for any f ∈ Fn, if L is given as input
a random sample of m examples drawn according to f (and P), where |Gn,m| satisfies

log |Gn,m| ≤ bεm− log(1/δ),
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(or equivalently m satisfies m ≥ (1/(bε))(log |Gn,m|+ log(1/δ))), then L is guaranteed to find
g ∈ Gn,m that with probability at least 1− δ satisfies P(f(x) 6= g(x)) ≤ ε.

Proof. We say g ∈ G is bad if P(f(x) 6= g(x)) > ε. Since the random samples of S are
each independent, the probability that a fixed bad hypothesis g is consistent with f on a
random sample of cardinality m is at most (1− ε)m. Let G ′ ⊆ Gn,m be the subset of all bad
hypotheses in Gn,m. By the union bound, the probability that there exists g ∈ G ′ that is
consistent with f on a random sample of cardinality m is at most |G ′| (1 − ε)m. We want
this quantity to be at most δ. Since G ′ ⊆ Gn,m, it suffices to show that |Gn,m| (1 − ε)m ≤ δ.
Taking logarithms and using log(1/(1− ε)) = Θ(ε) concludes the proof. �

Proof of Theorem 3.20. Let Gn,m be the set of hypotheses that can be output when the input
has cardinality m. Since L is an (α, β)-Occam algorithm, every such hypothesis g has bit-

length at most size(g) ≤ (n · size(f))αmβ, so that |Gn,m| ≤ 2size(g)≤(n·size(f))αmβ . By Theorem
3.21, the output g of L satisfies P(f 6= g) < ε with probability at least 1− δ, if

log |Gn,m| ≤ bεm− log(1/δ).

That is, we want m to satisfy

m ≥ b−1ε−1 log |Gn,m|+ b−1ε−1 log(1/δ).

i.e. it suffices to choose m so that m ≥ 2b−1ε−1 max(log |Gn,m| , log(1/δ)). Choosing a = 2/b
concludes the proof. �

3.5. Additional Comments. A slightly different version of the Perceptron Algorithm can
be stated as follows

Algorithm 3.22 (Perceptron Algorithm, Version 2).

• Define w(1) := 0 ∈ Rn and let s := 1
• If there exists some 1 ≤ i ≤ k such that yi 6= sign(〈w(s), x(i)〉), i.e. a mis-classification

occurs, define

w(s+1) := w(s) + yi
x(i)

‖x(i)‖
.

• Increase the value of s by one. Repeat the previous step until no such i exists.
• Output w := w(s).

We can then state a version of Theorem 2.9 for Algorithm 3.22.

Theorem 3.23 (Perceptron Algorithm Run Time, Version 2). Let x(1), . . . , x(k) ∈ Rn

and let y1, . . . , yk ∈ {−1, 1} be given. Assume that there exists w ∈ Rn such that

sign(〈w, x(i)〉) = yi, ∀ 1 ≤ i ≤ k.

Assume ‖w‖ = 1. Define

σ := min
1≤i≤k

∣∣∣∣〈w, x(i)

‖x(i)‖
〉
∣∣∣∣ .

Then the Perceptron Algorithm 3.22 terminates with a value of s satisfying

s ≤ σ−2.
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The Winnow Algorithm is similar to the Perceptron Algorithm, though the data is usually
assumed to be vectors from {0, 1}n, and multiplicative updates are made to the weight vector
w, rather than additive updates.

In our analysis of the Perceptron Algorithm 2.8, we defined

β := max
i=1,...,k

∥∥x(i)
∥∥ , θ := min

{
‖w‖ : ∀ 1 ≤ i ≤ k, yi〈w, x(i)〉 ≥ 1

}
.

We remarked after Lemma 2.11 that the margin 1/θ measures how wide a symmetric “slab”
through the origin can separate the vectors x(1), . . . , x(k) into their two classes. The support
vector machine is another linear classifier that takes this analysis into account as follows.
Let λ > 0 and suppose we want to find the w ∈ Rn and z1, . . . , zk ∈ R minimizing

λ ‖w‖2 +
1

k

k∑
i=1

zi.

subject to the linear constraints

yi〈w, x(i)〉 ≥ 1− zi, zi ≥ 0, ∀ 1 ≤ i ≤ k.

This is a quadratic minimization problem subject to linear constraints.

4. Vapnis-Chervonenkis (VC) Theory

Definition 4.1 (Metric Space). Let A be a set and let d : A × A → [0,∞). We say that
A is a metric on A if:

• d(x, y) ≥ 0 for all x, y ∈ A, and d(x, y) = 0 only when x = y.
• d(x, y) = d(y, x) for all x, y ∈ A.
• d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ A.

When d is a metric on A, we refer to (A, d) as a metric space. For any x ∈ A and for any
ε > 0, we denote the open ball with radius ε centered at x as

B(x, ε) = Bd(x, ε) := {y ∈ A : d(x, y) < ε}.

Definition 4.2 (ε-net). Let A be a set and let d : A × A → [0,∞) be a metric on A. An
ε-net is a subset {x(i)}i∈I of A such that⋃

i∈I

B(x(i), ε) = A.

Proposition 4.3. Let ‖·‖ be a norm on Rn. Let ε > 0. Then there exists an ε-net N in the
unit ball B := {x ∈ Rn : ‖x‖ < 1} such that

|N | ≤ (1 + 2/ε)n.

Proof. Let {x(i)}ki=1 be a set of maximal cardinality such that
∥∥x(i) − x(j)

∥∥ ≥ ε for all 1 ≤
i, j ≤ k such that i 6= j. It follows that {x(i)}ki=1 is an ε-net in B (if B∩

(
∪ki=1B(x(i), ε)

)
6= B,

then there exists x ∈ B such that
∥∥x(i) − x

∥∥ ≥ ε for all 1 ≤ i ≤ k, contradicting the maximal

cardinality of {x(i)}ki=1.) By definition of {x(i)}ki=1, the open balls {B(x(i), ε/2)}ki=1 are disjoint
and their union is contained in B(0, 1 + ε/2). So, comparing the volumes of these two sets,
we have

k(ε/2)n ≤ (1 + ε/2)n.
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That is, k ≤ (1 + 2/ε)n. �

Exercise 4.4. Let ‖·‖ be a norm on Rn. Let ε > 0. Then any ε-net N in the unit ball
B := {x ∈ Rn : ‖x‖ < 1} satisfies

(1/ε)n ≤ |N | ≤ (1 + 2/ε)n.

Definition 4.5 (Covering Number). Let (A, d) be a matric space and let ε > 0. The
ε-covering number of (A, d), denoted N (A, d, ε) is the smallest cardinality of an ε-net in
A.

Exercise 4.6. Let ‖·‖ be the standard norm on Rn. Let ε > 0. Let B := {x ∈ Rn : ‖x‖ < 1}.
Then

(1/ε)n ≤ |N | (B, ‖·‖ , ε) ≤ (1 + 2/ε)n.

Definition 4.7 (VC Dimension). Let A be a set and let F ⊆ {−1, 1}A be a class of
Boolean functions on A. We say a set B ⊆ A is shattered by F if, for any g : B → {−1, 1},
there exists f ∈ F such that f(x) = g(x) for all x ∈ B. The VC-dimension of F , denoted
VCdim(F) is the largest cardinality of a subset that is shattered by F .

Note that by definition of VCdim(F), we have |F| ≥ 2VCdim(F). So, VCdim(F) is somewhat
analogous to the log of the cardinality of F . Let F be the set of all boolean functions
f : {−1, 1}n → {−1, 1}. Then |F| = 22n and VCdim(F) = 2n, so in this case the trivial
lower bound on |F| is sharp. However, this lower bound can be quite far from exact, as we
discuss below.

Lemma 4.8 (Pajor’s Lemma). Let A be a finite set and let F ⊆ {−1, 1}A be a class of
Boolean functions on A. Then

|F| ≤ |{∅ ⊆ A′ ⊆ A : A′ is shattered by F}| .
Proof. We induct on the size of A. The case |A| = 1 is clear (e.g. if F = 1, then the right
side is also 1 since ∅ is counted). Suppose then that the Lemma holds when |A| = n ≥ 1
and consider the case |A| = n + 1. Write A = {a} ∪ A0, where |A0| = n. Let F1 := {f ∈
F : f(a) = 1}, F−1 := {f ∈ F : f(a) = −1}. By the inductive hypothesis,

|F1| ≤ |{∅ ⊆ A′ ⊆ A0 : A′ is shattered by F1|A0}| =: c1.

|F−1| ≤ |{∅ ⊆ A′ ⊆ A0 : A′ is shattered by F−1|A0}| =: c−1.

So, it remains to show that

c1 + c−1 ≤ c0 := |{∅ ⊆ A′ ⊆ A : A′ is shattered by F}| .
If a set A′ ⊆ A0 is shattered by F1|A0 , then A′ is also shattered by F , since F1 ⊆ F . The

same goes for F−1. Suppose now that A′ ⊆ A0 is in the intersection of the sets defined by c1

and c−1. Then c1 + c−1 will count the set A′ twice, while c0 only counts it once. However,
the set {a} ∪A′ shattered by F , since A′ is in both sets corresponding to c1 and c−1, so this
set is also counted by c0 (but not by c1 or c−1). The inequality c1 + c−1 ≤ c0 follows. �

Lemma 4.9 (Sauer-Shelah). Let A be a finite set with |A| = n, and let F ⊆ {−1, 1}A be
a class of Boolean functions on A. Let v := VCdim(F). Then

|F| ≤
d∑
i=0

(
n

i

)
≤ (en/d)d.
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Proof. By Pajor’s Lemma 4.8,

|F| ≤ |{∅ ⊆ A′ ⊆ A : A′ is shattered by F}| .
By the definition of VCdim(F), each set counted on the right has cardinality at most d. So,

|F| ≤ |{∅ ⊆ A′ ⊆ A : |A′| ≤ d}| =
d∑
i=0

(
n

i

)
.

The last inequality follows by the binomial theorem since d ≤ n, so

d∑
i=0

(
n

i

)
(d/n)d ≤

d∑
i=0

(
n

i

)
(d/n)i ≤

n∑
i=0

(
n

i

)
(d/n)i = (1 + (d/n))n ≤ ed.

�

Exercise 4.10. Show that Sauer-Shelah lemma is sharp for all n, d. That is, find F with
d := VCdim(F) such that

|F| ≤
d∑
i=0

(
n

i

)
≤ (en/d)d.

(Hint: consider the set of x ∈ {0, 1}n such that x has at most d entries equal to 1.)

Proposition 4.11. Let F be the set of linear threshold functions

F := {f : Rn → {−1, 1} : ∃w ∈ Rn, t ∈ R, f(x) = sign(〈w, x〉 − t), ∀x ∈ Rn}.
Then VCdim(F) = n+ 1.

Proof. Consider the set of vectors B := {0, e1, . . . , en} with exactly n − 1 entries equal to
0, together with the zero vector. Then |B| = n + 1. We claim that B is shattered by F .
Indeed, if g : B → {−1, 1} is given, denote w := (g(e1) − g(0), . . . , g(en) − g(0)) ∈ {0, 1}n,
then define f(x) := sign(〈w, x〉 + g(0)). Then for any 1 ≤ i ≤ n, 〈w, ei〉 + g(0) = g(ei), and
f(0) = g(0), so f(x) = g(x) for all x ∈ B. We conclude that VCdim(F) ≥ n+ 1.

We now show that VCdim(F) ≤ n + 1. We argue by contradiction. Suppose B ⊆ Rn is
a set of n + 2 vectors that is shattered by F . By Remark 2.5, there is a set B′ ⊆ Rn+1 of
n+ 2 vectors that is shattered by the set of homogeneous linear threshold functions

F ′ := {f : Rn+1 → {−1, 1} : ∃w ∈ Rn, f(x) = sign(〈w, x〉), ∀x ∈ Rn+1}.
Suppose B′ = {x(1), . . . , x(n+2)} ⊆ Rn+1. Then there exist constants α1, . . . , αn+2 ∈ R such
that

∑n+2
i=1 αix

(i) = 0. Let I := {1 ≤ i ≤ n+ 2: αi > 0}, J := {1 ≤ i ≤ n+ 2: αi < 0}. Then∑
i∈I

αix
(i) = −

∑
i∈J

αix
(i). (∗)

Since B′ is shattered by F ′, there is a w ∈ Rn+1 such that 〈w, x(i)〉 > 0 for all i ∈ I and
〈w, x(i)〉 < 0 for all i ∈ J . So, if I is nonempty,

0 <
∑
i∈I

αi〈w, x(i)〉 =
〈
w,
∑
i∈I

αix
(i)
〉

(∗)
= −

〈
w,
∑
i∈J

αix
(i)
〉

= −
∑
i∈J

αi〈w, x(i)〉 ≤ 0.

So, we have a contradiction when I is nonempty. Since either I or J must be nonempty, the
proof is complete. �
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The following concept, sometimes simply called an ε-net in the literature, is quite different
from the ε-nets we discussed for metric spaces.

Definition 4.12 (Measure-Theoretic ε-net). Let 0 < ε < 1. Let Ω be a set and let P be
a probability law on Ω. Let A ⊆ Ω. A measure theoretic ε-net for A is a set of points S ⊆ A
such that, for every A′ ⊆ A with P(A′) > ε, there exists s ∈ S such that {s} ∩ A′ 6= ∅.

That is, every region with large measure contains some point in S. Since no reference to
any metric is made in this definition, it is quite different that an ε-net for metric spaces.

Example 4.13. Let Ω be the set of closed intervals in [0, 1], and for any ω ∈ Ω, let P(ω)

be the usual length of ω. Let ε > 0. Then the points {iε}b1/εci=0 is an ε-net for Ω, since any
closed interval in [0, 1] of width larger than ε must intersect this set of points.

If on the other hand Ω = [0, 1] with the same P, then no finite ε-net exists, since the
complement of any finite set has measure 1. However, if [0, 1] has the usual metric on it,
then a metric ε-net certainly exists.

Exercise 4.14. Show that both our notions of ε-net agree (up to changing the constant ε) in
the following case: Ω is a metric space, P is a probability law on Ω, A = {B(x, r) : x ∈ Ω, r >
0} and there exist a, b, c1, c2 > 0 such that c1r

a ≤ P(B(x, r)) ≤ c2r
b for all x ∈ Ω, r > 0.

Below, we consider F to be a subset of {0, 1}-valued functions on A. Let P be a probability
law on A. Let f, g ∈ F . Since f = 1{f=1}, we can identify f with the set where it is
1 and extend set operations to functions in F . For example, f ∩ g := 1{f=1}∩{g=1} and
f∆g := 1{f=1}∆{g=1}, where ∆ denotes symmetric difference. Then f ∩ g = g ∩ f and
f∆g = g∆f . Also, we can define P(f) := P(f = 1) = Ef , so that P can be extended

to a probability law on {0, 1}A. The notion of measure-theoretic ε-net for a set of boolean
functions is then well-defined using this probability law P. Define now

D(f) := {f∆g : g ∈ F}.
Exercise 4.15. For any f ∈ F ,

VCdim(F) = VCdim(D(f)).

Lemma 4.16. Let ε > 0. Suppose f ∈ F is a function to be learned by an algorithm and S
is a (measure-theoretic) ε-net for D(f). Suppose the algorithm outputs a hypothesis g ∈ F
such that f(s) = g(s) for all s ∈ S. Then

P(f 6= g) < ε.

Proof. Since f(s) = g(s) for all s ∈ S, (g∆f)(s) = 0 for all s ∈ S, so (g∆f) ∩ {s} = 0 for
all s ∈ S. Since g∆f ∈ D(f), and S is an ε-net for D(f), we conclude by the definition of
ε-net that P(g∆f) < ε. That is, P(f 6= g) < ε. �

So, if f ∈ F is the function to be learned, the above lemma shows that creating an ε-net
for D(f) with high probability is sufficient to PAC learn F . In retrospect, the Occam’s
Razor bound in Theorem 3.20 used this fact implicitly.

Proposition 4.17. Let P be a probability law on A. Let F ⊆ {0, 1}A. Let d := VCdim(F).
Let 0 < ε, δ < 1. Let S be a random sample from A of size m where

m ≥ 100(ε−1 log(1/δ) + dε−1 log(1/ε)).

Then with probability at least 1− δ, S is a (measure-theoretic) ε-net in F .
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Proof. Let S1 be a random sample of size m from A. Let C be the event that S1 does not
form an ε-net in F . Our goal is to upper bound P(C). If C occurs, then there exists h ∈ F
with Ph ≥ ε and such that h ∩ S1 = ∅. Let S2 be a random size of size m from A that is
independent of S1. Since Ph ≥ ε, if X is the number of times that S2 intersects h, then

P(X < εm/2) ≤ P (|X − εm| < εm/2) ≤ 4ε−2m−2mathrmV ar(X)

= 4ε−2m−2mε(1− ε) = 4ε−1m−1(1− ε).

So, if ε < 1/2 and m > 10/ε, P(X < εm/2) < 1/2. Let C ′ be the event that C occurs (so
there exists h ∈ F with Ph ≥ ε, h ∩ S1 = ∅) and |S2 ∩ h| > εm/2. We have shown that
P(C ′|C) ≥ 1/2, and since C ′ ⊆ C, we have P(C ′|C) = P(C ′)/P(C), so

P(C ′) ≥ (1/2)P(C).

So, in order to upper bound P(C) it suffices to upper bound P(C ′).
Let S be a random sample from A of size 2m and let h ∈ F with Ph ≥ ε. Suppose
|S ∩ h| > εm/2. Then, choose two disjoint T1, T2 ⊆ S each of cardinality m, uniformly at
random among all such partitions of S into two equal sized sets. Then since (T1, T2) is equal
in distribution to (S1, S2), we have

P(C ′) = P(∃ h̃ ∈ F : P(h̃) ≥ ε, h̃ ∩ T1 = ∅).

The probability P(h̃∩T1 = ∅) only depends on h̃|T1 . From the union bound and Lemma 4.9,

P(C ′) ≤
∑

h̃∈F|T1 : P(h̃)≥ε

P(h̃ ∩ T1 = ∅) ≤ (em/d)dP(h ∩ T1 = ∅). (∗)

The probability P(h∩T1 = ∅) can be computed from the following combinatorial problem.
Suppose we have 2m cubes sorted into piles U1, U2 each of size m, and we label ` ≥ εm/2
cubes red, uniformly at random. then P(h∩T1 = ∅) is the probability that all red cubes are
in T1. If ` is fixed, this probability is(

m
`

)(
2m
`

) =
m!(2m− `)!
2m!(m− `)!

=
`−1∏
i=0

m− i
(2m− i)

≤
`−1∏
i=0

1

2
= 2−`.

So,

P(h ∩ T1 = ∅) ≤
∞∑
j=`

2−j ≤ 2−`+1 ≤ 21−εm/2. (∗∗)

Combining (∗) and (∗∗) gives

P(C ′) ≤ 2
(em
d

)d
2−εm/2.

That is,

log P(C) ≤ log 4 + d[1 + log(m/d)]− log(2)εm/2

So, choosing m ≥ 10ε−1 log(1/δ) + 10dε−1 log(1/ε) means log P(C) ≤ log δ, as desired. �

Combining Exercise 4.15 with Propositions 4.16 and 4.17 proves the following Theorem,
sometimes called the Fundamental Theorem of Statistical Learning or the Fundamental
Theorem of Machine Learning
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Theorem 4.18 (Fundamental Theorem of Statistical Learning, Version 1). Let A
be a set. Let F ⊆ {0, 1}A be a class of boolean functions. Let d := VCdim(F). Suppose
f ∈ F is a function to be learned by an algorithm. Let S be a random sample from A of size
m where

m ≥ 100(ε−1 log(1/δ) + dε−1 log(1/ε)).

Then with probability at least 1− δ, S is a (measure-theoretic) ε-net for D(f). Suppose the
algorithm outputs a hypothesis g ∈ F such that f(s) = g(s) for all s ∈ S. Then

P(f 6= g) < ε.

That is, the algorithm can PAC learn F .

Theorem 4.18 immediately implies that, if an algorithm can output a hypothesis g that
agrees with the values of f on the random sample of sufficiently large size, then this algorithm
can PAC learn. So, knowing that a function class has a relatively small VC-dimension
immediately implies that it can be PAC learned. One major caveat of Theorem 4.18 is
that it does not guarantee efficient PAC learnability. In fact, the task of finding the
hypothesis g ∈ F that agrees with f might be computationally hard. For example, if F is the
class of 3-term DNF formulae on n variables, then VCdim(F) ≤ log2 |F| ≤ log2(33n) ≤ 6n,
but we know from Theorem 3.7 that F is not efficiently PAC learnable (in its own function
class).

Theorem 4.19 (Fundamental Theorem of Statistical Learning, Version 2). Let A be
a set. Let F ,G ⊆ {0, 1}A be two classes of boolean functions. Let d := VCdim(G). Suppose
f ∈ F is a function to be learned by an algorithm. Let S be a random sample from A of size
m where

m ≥ 100(ε−1 log(1/δ) + dε−1 log(1/ε)).

Then with probability at least 1− δ, S is a (measure-theoretic) ε-net for D(f). Suppose the
algorithm outputs a hypothesis g ∈ G such that f(s) = g(s) for all s ∈ S. Then

P(f 6= g) < ε.

That is, the algorithm can PAC learn F , viewed as a subset of G.

4.1. Applications of the Fundamental Theorem.

Proposition 4.20. Let G be a class of functions on a set A. Let n ≥ 3. Let F be the set of
linear threshold functions in n elements of G:

F := {f : Rn → {−1, 1} : ∃w ∈ Rn, t ∈ R, f(x) = sign(
n∑
i=1

wigi(x)− t), ∀x ∈ A}.

Then VCdim(F) ≤ (· · · ).

Proof. �

Proposition 4.21. (sample complexity of boosting, with VC-dimension bounds)

Proof. �

Theorem 4.22 (PAC Learning Linear Threshold Functions).
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5. Some Concentration of Measure

The mathematical tools contained in this section will be used in Section 6.

5.1. Concentration for Independent Sums. In certain cases, we can make rather strong
conclusions about the distribution of sums of i.i.d. random variables, improving upon the
laws of large numbers.

Theorem 5.1 (Hoeffding Inequality/ Large Deviation Estimate). Let X1, X2, . . . be
independent identically distributed random variables with P(X1 = 1) = P(X1 = −1) = 1/2.
Let a1, a2, . . . ∈ R. Then, for any n ≥ 1,

P
( n∑
i=1

aiXi ≥ t
)
≤ e

− t2

2
∑n
i=1

a2
i , ∀ t ≥ 0.

Consequently,

P
(∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ 2e

− t2

2
∑n
i=1

a2
i , ∀ t ≥ 0.

Proof. By dividing a1, . . . , an by a constant, we may assume
∑n

i=1 a
2
i = 1. Let α > 0. Using

the (exponential) moment method as in Markov’s inequality, and αt ≥ 0,

P(
n∑
i=1

aiXi ≥ t) = P(eα
∑n
i=1 aiXi ≥ eαt) ≤ e−αtEeα

∑n
i=1 aiXi = e−αt

n∏
i=1

EeαaiXi .

The last equality used independence of X1, X2, . . .. Using an explicit computation and Ex-
ercise 5.2,

EeαaiXi = (1/2)(eαai + e−αai) = cosh(αai) ≤ eα
2a2i /2, ∀ i ≥ 1.

In summary, for any t ≥ 0

P(
n∑
i=1

aiXi ≥ t) ≤ e−αteα
2
∑n
i=1 a

2
i /2 = e−αt+α

2/2.

Since α > 0 is arbitrary, we choose α to minimize the right side. This minimum occurs when
α = t, so that −αt+ α2/2 = −t2/2, giving the first desired bound. The final bound follows
by writing P(|

∑n
i=1 aiXi| ≥ t) = P(

∑n
i=1 aiXi ≥ t) + P(−

∑n
i=1 aiXi ≥ t) and then applying

the first inequality twice. �

Exercise 5.2. Show that cosh(x) ≤ ex
2/2, ∀ x ∈ R.

In particular, Hoeffding’s inequality implies that

P
( 1

n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 2e−nt

2/2, ∀ t ≥ 0.

This inequality is much stronger than either Markov’s or Cheyshev’s inequality, since they
only respectively imply that

P
( 1

n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 1

t
, P

( 1

n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 1

nt2
, ∀ t ≥ 0.
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Note also that Hoeffding’s inequality gives a quantitative bound for any fixed n ≥ 1, unlike
the (non-quantitative) limit theorems which only hold as n→∞.

Exercise 5.3 (Chernoff Inequality). Let 0 < p < 1. Let X1, X2, . . . be independent
identically distributed random variables with P(X1 = 1) = p and P(X1 = 0) = 1− p for any
i ≥ 1. Then for any n ≥ 1

P
( 1

n

n∑
i=1

Xi ≥ t
)
≤ e−np

(ep
t

)tn
, ∀ t ≥ p.

Prove the same estimate for P( 1
n

∑n
i=1Xi ≤ t) for any t ≤ p. (Hint: 1 + x ≤ ex for any

x ∈ R, so 1 + (eα − 1)p ≤ e(eα−1)p.)

Exercise 5.4. For any natural number n and a parameter 0 < p < 1, define an Erdös-Renyi
graph on n vertices with parameter p to be a random graph (V,E) on a (deterministic) vertex
set V of n vertices (thus (V,E) is a random variable taking values in the discrete space of

all 2(n2) possible undirected graphs one can place on V ) such that the events {i, j} ∈ E for
unordered pairs with i, j ∈ V are independent and each occur with probability p.

Suppose we have an Erdös-Renyi random graph G = (V,E) on n vertices with parameter
0 < p < 1. Define d := p(n− 1).

• Show that d is the expected degree of each vertex in G. (The degree of a vertex
v ∈ V is the number of vertices connected to v by an edge in E.)
• Show that there exists a constant c > 0 such that the following holds. Assume
p ≥ c logn

n
. Then with probability larger than .9, all vertices of G have degrees in the

range (.9d, 1.1d). (Hint: first consider a single vertex, then use the union bound over
all vertices.)

5.2. Concentration for Lipschitz Functions. One way to phrase the general question
in the subject of concentration of measure is: how far is a random variable from its mean
value? Hoeffding’s Inequality says that linear functions of mean zero ±1 valued independent
random variables are exponentially close to their mean value. A similar statement can be
made for bounded random variables (see Theorem 5.8 below). In order to answer the general
question, we next consider Lipschitz functions of i.i.d. random variables. We focus on the
Gaussian setting for simplicity.

For any x = (x1, . . . , xn) ∈ Rn, we denote ‖x‖ := (x2
1 + · · ·+ x2

n)1/2.

Theorem 5.5 (Concentration of measure for Gaussians, Lipschitz function form)).
Let f : Rn → R. Suppose that for all x, y ∈ Rn, |f(x)− f(y)| ≤ ‖x− y‖, so that f is 1-
Lipschitz. Let X = (X1, . . . , Xn) be a mean zero Gaussian random vector with identity
convariance matrix. Then for all t > 0,

P (x ∈ Rn : |f(x)− Ef(X)| ≥ t) ≤ 2e−2t2/π2

.

Proof. We assume that f all partial derivatives of f exist and are continuous. Let Y =
(Y1, . . . , Yn) be another mean zero Gaussian random vector with identity convariance matrix,
such that Y and X are independent. Let 0 ≤ θ ≤ π/2 and define

Zθ := X sin θ + Y cos θ.

By rotation invariance of a Gaussian random vector, Zθ and d
dθ
Zθ = X cos θ − Y sin θ have

the same joint distribution as X and Y (since the vectors (sin θ, cos θ) and (cos θ,− sin θ) are

40



orthogonal in R2.) Let φ : R→ [0,∞) be a convex function. Using then Jensen’s Inequality,
then the Chain Rule, then Jensen’s inequality and Fubini’s Theorem,

Eφ(f(X)− Ef(Y )) ≤ Eφ(f(X)− f(Y )) = Eφ
(∫ π/2

0

d

dθ
f(Zθ)dθ

)
= Eφ

(∫ π/2

0

〈(∇f)(Zθ),
d

dθ
Zθ〉dθ

)
= Eφ

( 1

π/2

∫ π/2

0

π

2
〈(∇f)(Zθ),

d

dθ
Zθ〉dθ

)
≤ E

1

π/2

∫ π/2

0

φ
(π

2
〈(∇f)(Zθ),

d

dθ
Zθ〉
)
dθ =

1

π/2

∫ π/2

0

Eφ
(π

2
〈(∇f)(Zθ),

d

dθ
Zθ〉
)
dθ

=
1

π/2

∫ π/2

0

Eφ
(π

2
〈(∇f)(X), Y 〉

)
dθ = Eφ

(π
2
〈(∇f)(X), Y 〉

)
Let α ∈ R and let φ(x) := eαx for all x ∈ R. Then using independence in Y and Fubini’s

Theorem,

E exp(α[f(X)− Ef(Y )]) ≤ E exp
(
α
π

2

n∑
i=1

∂f

∂xi
(X)Yi

)
= EX

n∏
i=1

EY exp
(
α
π

2

∂f

∂xi
(X)Yi

)
.

Using an explicit computation, for any s ∈ R and for any 1 ≤ i ≤ n,

EY e
sYi =

∫ ∞
−∞

esye−y
2/2 dy√

2π
= es

2/2

∫ ∞
−∞

e−(y−s)2/2 dy√
2π

= es
2/2.

So, applying this inequality with s = απ
2
∂f
∂xi

(X) for each 1 ≤ i ≤ n,

E exp(α[f(X)− Ef(Y )]) ≤ E exp
(
α2π

2

8

n∑
i=1

( ∂f
∂xi

(X)
)2)
≤ exp

(
α2π

2

8

)
.

(Since f is 1-Lipschitz, |〈∇f(x), y〉| ≤ 1 for all x, y ∈ Rn with ‖y‖ ≤ 1. In particular, using
y := ∇f(x)/ ‖∇f(x)‖, we get ‖∇f(x)‖ ≤ 1.) So,

P(f(X)− Ef(Y ) > t) = P(exp(α[f(X)− Ef(Y )]) > eαt)

≤ e−αt exp
(
α2π

2

8

)
= exp

(
− αt+ α2π

2

8

)
.

The minimum α occurs when α = 4t/π2, so making this choice of α, we get

P(f(X)− Ef(Y ) > t) ≤ exp(−2t2/π2).

Similarly, P(f(X)− Ef(Y ) < −t) ≤ exp(−2t2/π2), so that

P(|f(X)− Ef(Y )| > t) = P(f(X)− Ef(Y ) > t) + P(f(X)− Ef(Y ) < −t)
≤ 2 exp(−2t2/π2).

�

Theorem 5.6 (Johnson-Lindenstrauss Lemma). Let x(1), . . . , x(n) ∈ Rm. Let ε > 0.

Then there exists a linear function h : Rm → RO(ε−2 logn) such that∥∥x(i) − x(j)
∥∥ ≤ ∥∥h(x(i))− h(x(j))

∥∥ ≤ (1 + ε)
∥∥x(i) − x(j)

∥∥ , ∀ 1 ≤ i, j ≤ n.

One proves this via the probabilistic method. By concentration of measure, a random
projection does what we require.
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Proof. Fix 1 ≤ k ≤ m. Let Π: Rm → Rm be the orthogonal projection such that

Π(z1, . . . , zm) := (z1, . . . , zk, 0, . . . , 0), ∀ (z1, . . . , zm) ∈ Rm.

Let X = (X1, . . . , Xm) be a standard m-dimensional Gaussian random vector. Define

a := E ‖ΠX‖ .
We will eventually show that a ≥ 10−2

√
k. Observe

E ‖ΠX‖2 = E
k∑
i=1

X2
i = kEX2

1 . = k. (∗)

Now, by Theorem 5.5 for the 1-Lipschitz function x 7→ ‖Πx‖,

E ‖ΠX‖4 =

∫ ∞
0

4u3P(‖ΠX‖ ≥ u)du

=

∫ 2a

0

4u3P(‖ΠX‖ ≥ u)du+

∫ ∞
2a

4u3P(‖ΠX‖ ≥ u)du

≤
∫ 2a

0

4u3du+

∫ ∞
2a

4u3P(| ‖ΠX‖ − a| > u/2)du

≤ 16a4 + 8

∫ ∞
2a

u3e−u
2/2π2

du = 16a4 + 8(2π2)(2a2 + π2)e−2a2/π2 ≤ 16a4 + 2π4

≤ 16a4 + 200k2 ≤ 216

(∫
Rm
‖Πx‖2 γm(x)dx

)2

, using Jensen’s inequality and (∗).

So, if Z := ‖ΠX‖ is a random variable, we have shown that EZ4 < c(EZ2)2 where
c := 216. So, using Hölder’s Inequality, for p = 3/2, q = 3,

EZ2 = E(Z2/3Z4/3) ≤ (EZ)2/3(EZ4)1/3 ≤ (EZ)2/3c1/3(EZ2)2/3.

Using this inequality and (∗),

EZ ≥ c−1/2
√

EZ2 ≥ 216−1/2
√
k. (∗∗)

In summary, a ≥ 2−4
√
k for a defined above.

Let A be an m × m matrix of i.i.d. standard Gaussian random variables. Fix x(0) ∈
Rm with ‖x‖ = 1. By rotation invariance of the Gaussian measure, A and AQ have the
same distribution where Q is a fixed m × m orthogonal matrix, so if we choose Q so that
Q(1, 0, . . . , 0)T = x(0), we get

P
(
A ∈ Rm×m :

∣∣ ∥∥ΠAx(0)
∥∥

2
− a
∣∣ ≥ εa

)
= P

(
A ∈ Rm×m :

∣∣ ∥∥ΠA(1, 0, . . . , 0)T
∥∥

2
− a
∣∣ ≥ εa

)
= P (X ∈ Rm | ‖ΠX‖ − a| ≥ εa) .

So, by Theorem 5.5 applied to the 1-Lipschitz function x 7→ ‖Πx‖, and using a ≥ 2−4
√
k,

for any ε > 0, and for any

P
(
A ∈ Rm×m :

∣∣ ∥∥ΠAx(0)
∥∥

2
− a
∣∣ ≥ εa

)
≤ 2e−2ε2a2/π2 ≤ 2e−2−10kε2 .

Let x(1), . . . , x(n) be n points in Rm. If k ≥ 212ε−2 log n, the union bound shows that

P

(
A ∈ Rm×m : ∃ i 6= j :

∣∣∣∣ ∥∥∥∥ΠA

(
x(i) − x(j)

‖x(i) − x(j)‖

)∥∥∥∥− a∣∣∣∣ ≥ εa

)
≤
(
n

2

)
2e−2−10kε2 < 1.
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For any 1 ≤ i ≤ n, define yi := ΠAx(i)/(a(1− ε)). Then ∃ A ∈ Rn×m such that

1 ≤
∥∥∥∥ y(i) − y(j)

‖x(i) − x(j)‖

∥∥∥∥ ≤ 1 + ε

1− ε
≤ 1 + 3ε, ∀ 1 ≤ i, j ≤ n.

So, our required embedding is h := ΠA
a(1−ε) , so that h(x(i)) = y(i) for all 1 ≤ i ≤ n. Note

that h is linear and its nonzero entries form a rectangular matrix of i.i.d. Gaussians. Also,
we can choose k := d212ε−2 log ne. (In fact, if we choose k to be slightly larger, then the
probability becomes exponentially small, so essentially all A satisfies our desired property,
hence essentially all linear projections h : Rn → RO(ε−2 logn) satisfy our desired property.) �

Exercise 5.7. High-dimensional geometry is much different than low-dimensional geometry,
as this exercise demonstrates.

• Show that “most” of the mass of an n-dimensional Gaussian is concentrated on the
sphere of radius

√
n centered at the origin. That is, if X1, . . . , Xn are n i.i.d. standard

Gaussian random variables, then

lim
n→∞

P(
√
X2

1 + · · ·+X2
n ∈ (n+

√
3n, n−

√
3n) ≥ 2/3.

In fact, you should be able to compute the limit exactly.
• Generally, “most” of the mass of a high-dimensional convex body is concentrated

near the surface of the body. Let Voln denote the usual volume in Rn (so that the
volume of a unit square [0, 1]n is 1.) For example, show that, for any ε > 0,

lim
n→∞

Voln

(
[−1

2
(1− ε), 1

2
(1− ε)]n

)
= 0.

• Let Bn := {x ∈ Rn : ‖x‖ ≤ 1} be the unit ball centered at the origin. Show that

lim
n→∞

Voln(Bn) = 0.

• Let Cn = {x ∈ {[−1/2, 1/2]n : ∃ y ∈ {−1/2, 1/2}n such that ‖x− y‖ ≤ 1/2}} be the
union of balls of radius 1/2 centered at the corners of the hypercube [−1/2, 1/2]n.
Let Dn := {x ∈ Rn : ‖x‖ ≤ r} be a ball of radius r centered at the origin, where r
is chosen to be as large as possible so that Dn does not intersect the interior of Cn.
(Put another way, Dn is tangent to the balls Cn.) Find

lim
n→∞

Voln(Dn).

Before you do the computation, try to guess what the answer should be.

5.3. Additional Comments. Hoeffding’s inequality in Theorem 5.1 can be generalized to
the following statement.

Theorem 5.8 (Hoeffding Inequality/ Large Deviation Estimate). For all i ≥ 1,
let ai < bi be real numbers. Let X1, X2, . . . be independent random variables with P(Xi ∈
[ai, bi]) = 1. Then, for any n ≥ 1,

P
( n∑
i=1

Xi − E
( n∑
j=1

Xj

)
≥ t
)
≤ e

− 2t2∑n
i=1

(bi−ai)2 , ∀ t ≥ 0.
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Consequently,

P
(∣∣∣ n∑

i=1

Xi − E
( n∑
j=1

Xj

)∣∣∣ ≥ t
)
≤ 2e

− 2t2∑n
i=1

(bi−ai)2 , ∀ t ≥ 0.

The proof of Theorem 5.8 imitates that of Theorem 5.1, while using the following Lemma.

Lemma 5.9 (Hoeffding’s Lemma). Let a < b be real numbers. Let X be a random variable
with P(X ∈ [a, b]) = 1. Then for any α ∈ R,

Eeα(X−EX) ≤ e
1
8
α2(b−a)2 .

Proof. By replacing X with X − EX, we may assume that EX = 0 and instead prove that

EeαX ≤ e
1
8
α2(b−a)2 .

Since a ≤ X ≤ b with probability one, there is a random Y ∈ [0, 1] such that X =:
aY + b(1 − Y ). That is, this equality holds when Y := (X − b)/(a − b). By convexity of
x 7→ eαx,

eαX = eα(aY+b(1−Y )) ≤ Y eαa + (1− Y )eαb =
X − b
a− b

eαa +
a−X
a− b

eαb.

Let γ := −b/(a− b), c := α(a− b), f(c) := −γc + log(1− γ + γec). Taking expectations of
both sides and using EX = 0 we get

EeαX ≤ − b

a− b
eαa +

a

a− b
eαb = ef(c).

Note that f(0) = 0, f ′(c) = −γ + γec

1−γ+γec
, f ′(0) = 0, and

f ′′(c) =
γec

1− γ + γec
− γ2e2c

(1− γ + γec)2
=

γec

1− γ + γec

(
1− γec

1− γ + γec

)
So, if s := γec

1−γ+γec
, we have f ′′(c) = s(1 − s) ≤ 1/4. So, by Taylor’s Theorem (with error

term), for any c ∈ R, there exists c0 between 0 and c such that

f(c) = f(0) + cf ′(0) +
c2

2
f ′′(c0) =

c2

2
f ′′(c0) ≤ c2

8
.

In conclusion EeαX ≤ ec
2/8. �

Theorem 5.5 can be generalized to uniformly log-concave densities on Euclidean space (see
Ledoux, “The Concentration of Measure Phenomenon,” Proposition 2.18)

Theorem 5.10 (Concentration of measure for Log-Concave Measures, Lipschitz
function form)). Let f : Rn → R. Suppose that for all x, y ∈ Rn, |f(x)− f(y)| ≤ ‖x− y‖,
so that f is 1-Lipschitz. Let u : Rn → R be a function such that e−u(x) is a probability density
on Rn. Assume there exists c > 0 such that the Hessian of u satisfies Hess(u)(x) ≥ cI, in
the matrix sense. (That is, all eigenvalues of the Hessian of u are bounded below by c, for
all x ∈ Rn.) Let X have distribution e−u. Then, for all t > 0,

P (x ∈ Rn : |f(x)− Ef(X)| ≥ t) ≤ 2e−ct
2/2.
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Note that Hoeffding’s Inequality 5.8 provides the same bound when P(X1 = 1) = P(X1 =
−1) = 1, or when P(X1 = 1) = ε,P(X1 = −1) = 1 − ε with 0 < ε < 1 arbitrary. In
the latter case, former case, Hoeffding’s inequality is fairly sharp, but in the latter case,
Hoeffding’s inequality is not quite sharp. Put another way, Hoeffding’s inequality does not
account for the variance of the random variables. Bennett’s inequality below does account
for the variance of the random variables, with a potentially worse decay than Hoeffding’s
inequality for large values of t.

Theorem 5.11 (Bennett’s Inequality). Let c > 0. Let X1, X2, . . . be independent random
variables with Xi ≤ c. For any s > 0, define h(s) := (1 + s) log(1 + s) − s. Define
σ2 :=

∑n
i=1 VarX2

i and assume 0 < σ <∞. Then, for any n ≥ 1,

P
( n∑
i=1

Xi − E
( n∑
j=1

Xj

)
≥ t
)
≤ e−

σ2

c2
h
(
ct
σ2

)
≤ e

− t2

2+2ct/(3σ2) , ∀ t ≥ 0.

Consequently, if |Xi| ≤ c for all 1 ≤ i ≤ n,

P
(∣∣∣ n∑

i=1

Xi − E
( n∑
j=1

Xj

)∣∣∣ ≥ t
)
≤ 2e

− 2t2∑n
i=1

(bi−ai)2 , ∀ t ≥ 0.

Proof. Without loss of generality, we may assume that EXi = 0 and Xi ≤ 1 for all 1 ≤ i ≤ n.
For any s ∈ R, define φ(s) := es − s− 1. Note that

φ(α) ≤ α2/2, if s < 0, φ(αx) ≤ α2φ(x), ifx > 0, α ∈ [0, 1]. (∗)
The second inequality follows e.g. from the power series expansion of φ. Using the definition
of φ and EXi = 0 for all 1 ≤ i ≤ n, for any α ∈ [0, 1],

EeαXi = 1 + αEXi + Eφ(αXi) = 1 + Eφ(αXi)

(∗)
≤ 1 + Eφ(αmax(Xi, 0)) + (α2/2)E[max(−Xi, 0)]2

Using now (∗) and the bound Xi ≤ 1 for all 1 ≤ i ≤ n, and also ψ(α) ≥ α2/2 for α > 0,

EeαXi ≤ 1 + φ(α)E[max(Xi, 0)]2 + (α2/2)E[max(−Xi, 0)]2 ≤ 1 + φ(α)EX2
i ≤ eφ(α)EX2

i .

The proof now proceeds as in Hoeffding’s inequality, Theorem 5.1. For any t ≥ 0

P(
n∑
i=1

Xi ≥ t) ≤ e−αtEeα
∑n
i=1Xi ≤ e−αt+φ(α)

∑n
i=1 EX

2
i = e−αt+φ(α)σ2

.

Since α > 0 is arbitrary, we choose α to minimize the right side. This minimum occurs when
t
σ2 = φ′(α) = eα − 1, so that

α = log
(

1 +
t

σ2

)
.

At this value of α, φ(α) = t
σ2 − α, so

−αt+ σ2φ(α) = −t log
(

1 +
t

σ2

)
+ t− σ2 log

(
1 +

t

σ2

)
=

t

σ2
h(t/σ2).

, giving the first desired bound. The final bound follows by writing P(|
∑n

i=1 aiXi| ≥ t) =
P(
∑n

i=1 aiXi ≥ t) + P(−
∑n

i=1 aiXi ≥ t) and then applying the first inequality twice.
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h(s) ≥ s2/(2 + 2s/3) �

6. Empirical Risk Minimization (ERM) and Concentration

Problem 6.1 (Statistical Supervised Learning Problem). Let A,B be sets. Let
f : A → B be an unknown function. Let P be an unknown probability distribution on
A. The goal of the learning problem is to approximately determine the function f on all of
A using a small number of sample values of f on A. Let X(1), . . . , X(k) be a random sample
of size k (i.e. a sequence of independent random variables in A distributed according to P)
and let Y (1), . . . , Y (k) ∈ B. It is known that

f(X(i)) = Y (i), ∀ 1 ≤ i ≤ k.

The goal is to output a deterministic function g : A→ B that minimizes the prediction error

P(f(X(1)) 6= g(X(1))).

Since the probability distribution P is unknown, it is generally impossible to exactly
minimize the prediction error. So, the goal is often restated as minimizing the empirical
risk or empirical error defined as

1

k

∣∣i ∈ {1, . . . , k} : g(X(i)) 6= Y (i)
∣∣ . (∗)

The task of minimizing the quantity (∗) is called empirical risk minimization (ERM).
We can equivalently write the empirical error as

1

k

k∑
i=1

1g(X(i))6=Y (i) .

A basic question is then: how close is the empirical error to the true error? For example,
given t > 0, can we bound

P
( ∣∣∣∣∣1k

k∑
i=1

1g(X(i)) 6=Y (i) −P(g(X(1)) 6= Y (1))

∣∣∣∣∣ > t
)

?

Since

E
1

k

k∑
i=1

1g(X(i))6=Y (i) = P(g(X(1)) 6= Y (1))

, we get a bound from Hoeffding’s Inequality 5.8, namely

P
( ∣∣∣∣∣1k

k∑
i=1

1g(X(i)) 6=Y (i) −P(g(X(1)) 6= Y (1))

∣∣∣∣∣ > t
)
≤ 2e−2t2k

Therefore:

Proposition 6.2. For any ε > 0 and for any g : A→ B, with probability at least 1− ε, we
have ∣∣∣∣∣1k

k∑
i=1

1g(X(i)) 6=Y (i) −P(g(X(1)) 6= Y (1))

∣∣∣∣∣ ≤ 1√
k

√
log(2/ε).
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This Proposition is however unsatisfactory. If G minimizes the empirical risk, then G is
in fact a random function (since it depends on the random variables X(1), . . . , X(k)). On the
other hand, if g minimizes the actual risk, then g is deterministic. So, in order to compare
the minimizers of the empirical and actual risk, we need a bound as in Proposition 6.2 that
is uniform over all possible minimizers of the empirical risk. For example, suppose that g
comes from a class of functions G. In order to compare the empirical and actual risk, we
need to bound

P
(

sup
g∈G

∣∣∣∣∣1k
k∑
i=1

1g(X(i))6=Y (i) −P(g(X(1)) 6= Y (1))

∣∣∣∣∣ > t
)
.

If we can show this probability is small, then we can in fact conclude that the empirical risk
minimum is close to the actual risk minimum. For example:

Proposition 6.3. Suppose G is a finite class of functions from A to B. Let f : A→ B. Let
X(1), . . . , X(k) be a random sample of size k and for any 1 ≤ i ≤ k, let Y (i) := X(i). Let
G be a random element of G that minimizes the empirical risk ER(g) := 1

k

∑k
i=1 1g(X(i))6=Y (i)

among all g ∈ G. Let g minimize the risk P(g(X(1)) 6= Y (1)) among all g ∈ G. Let ε > 0.
Then, with probability at least 1− ε,∣∣ER(g)−P(g(X(1) 6= Y (1)))

∣∣ ≤ ...

Proof. �

6.1. Gaussian Processes.

Theorem 6.4. (Slepian’s Lemma) Let (X1, . . . , Xn) and (Y1, . . . , Yn) be n-dimensional
Gaussian random vectors such that EXi = EYi = 0 for i = 1, . . . , n, EX2

i = EY 2
i = 1 for

i = 1, . . . , n. Assume that EXiXj ≤ EYiYj for i, j ∈ {1, . . . , n}, i 6= j. Then

P (X1 > 0, . . . , Xn > 0) ≤ P (Y1 > 0, . . . , Yn > 0)

More generally, for any α1, . . . , αn ∈ R,

P (X1 > α1, . . . , Xn > αn) ≤ P (Y1 > α1, . . . , Yn > αn)

Proof. Let {rij}ni,j=1 be a symmetric positive definite matrix. Define

(2π)−n/2 |det r|−1/2

∫ ∞
0

· · ·
∫ ∞

0

e−x
T r−1x/2dx =:

∫ ∞
0

· · ·
∫ ∞

0

g(x, r)dx =: f(r)

In the special case that rij = EXiXj, we have from the definition of the mulvariate normal,

P (X1 > 0, . . . , Xn > 0) = (2π)−n/2 |det r|−1/2

∫ ∞
0

· · ·
∫ ∞

0

e−x
T r−1x/2dx

From Theorem 6.5, ∫
e−i〈y,x〉e−y

T ry/2dy = |det r|−1/2 (2π)n/2e−x
T r−1x/2
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So, g(x, r) = (2π)n
∫
e−i〈y,x〉e−y

T ry/2dy. And for i 6= j, ∂g/∂rij = ∂2g/∂xi∂xj. So, by
differentiating under the integral sign and then integrating by parts,

∂f

r12

=

∫ ∞
0

· · ·
∫ ∞

0

∂2g

∂x1∂x2

dx

=

∫ ∞
0

· · ·
∫ ∞

0

g(0, 0, x3, . . . , xn)dx3 · · · dxn ≥ 0 (∗)

For λ ∈ [0, 1] and ε > 0, let rij = λEYiYj − (1 − λ)EXiXj + εδij. Then r is symmetric
positive semidefinite, so (∗) and our assumption implies that

∂f

∂λ
=
∑
i 6=j

∂f

∂rij

∂rij
∂λ

=
∑
i 6=j

∂f

∂rij
(EYiYj − EXiXj) ≥ 0

Integrating this inequality for λ ∈ [0, 1] and then letting ε→ 0 concludes the theorem. �

Theorem 6.5. (Gaussian Fourier Transform) F(e−π|x|
2

) = e−π|ξ|
2

Proof. It suffices to prove the one dimensional identity
∫
R e
−π(x2+2ixy)dx = e−πy

2
. In this case

we write
∫
R e
−π(x2+2ixy)dx = e−πy

2 ∫
R e
−π(x+iy)2dx and then shift the contour. �

Theorem 6.6. (Slepian’s Inequality) Let (X1, . . . , Xn) and (Y1, . . . , Yn) be n-dimensional
Gaussian random vectors such that EXi = EYi = 0 for i = 1, . . . , n, and EX2

i = EY 2
i = 1

for i = 1, . . . , n. Assume that E(Xi −Xj)
2 ≤ E(Yi − Yj)2 for i, j ∈ {1, . . . , n}, i 6= j. Then

for all α ∈ R,

P ( sup
i=1,...,n

Xi > λ) ≤ P ( sup
i=1,...,n

Yi > λ)

In particular, E supi=1,...,nXi ≤ E supi=1,...,n Yi.

Proof. By our assumption, EXiXj ≥ EYiYj for i, j ∈ {1, . . . , n}, i 6= j. For i = 1, . . . , n
let fi : R → [0,∞) be a non-increasing smooth bounded function. Let h(x) =

∏n
i=1 fi(xi).

For i 6= j, ∂2h/∂xi∂xj = f ′i(xi)f
′
j(xj) ≥ 0. Let (Z1, . . . , Zn) be a mean zero Gaussian

random vector with unit variances, and with positive definite covariance matrix r. Let
f(r) = Eh(Z1, . . . , Zn). As in the proof of Slepian’s Lemma, Theorem 6.4, for i 6= j,

∂f

∂rij
=

∫
h(x)

∂g

∂rij
dx =

∫
∂2h

∂xi∂xj
g ≥ 0.

We therefore conclude that E
∏n

i=1 fi(Xi) ≥ E
∏n

i=1 fi(Yi). Fix λ ∈ R. Let fi approach
1(−∞,λ], so that P (supi=1,...,nXi < λ) ≥ P (supi=1,...,n Yi < λ), proving the theorem. �

Theorem 6.7. (Sudakov-Fernique Inequality [Cha05]) Let X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) be n-dimensional Gaussian random vectors such that EXi = EYi = 0 for i =
1, . . . , n. Assume that E(Xi −Xj)

2 ≤ E(Yi − Yj)2 for i, j ∈ {1, . . . , n}, i 6= j. Then

E sup
i=1,...,n

Xi ≤ E sup
i=1,...,n

Yi
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Proof. Let g,X1, . . . , Xn be Gaussians with Eg2 = τ 2.

EgF (g) =
1√
2πτ

∫
R
te−t

2/(2τ2)F (t)dt =
τ 2

√
2πτ

∫
R

(
− d

dt

)
e−t

2/(2τ2)F (t)dt

=
τ 2

√
2πτ

∫
R
F ′(t)e−t

2/(2τ2)dt = Eg2EF ′(g)

Let X ′i := Xi− gEgXiEg2
. Then EX ′ig = 0 for i = 1, . . . , n, so (X ′1, . . . , X

′
n) is independent of

g. So, conditioned on (X ′1, . . . , X
′
n), we have

E(gF (X)|X ′1, . . . , X ′n) = Eg2E

(
dF

dg
|X ′1, . . . , X ′n

)
=

n∑
i=1

Eg2E

(
∂F

∂xi

∂xi
∂g
|X ′1, . . . , X ′n

)

=
n∑
i=1

EgXiE

(
∂F

∂xi
|X ′1, . . . , X ′n

)
So, by integrating out the conditioning,

EgF (X) =
n∑
i=1

EgXiE

(
∂F

∂xi

)
In particular,

E(XjF (X)) =
n∑
i=1

EXiXjE

(
∂F

∂xi

)
(∗)

Let F (x) = Fβ(x) := 1
β

log(
∑n

i=1 e
βxi). We may assume that X and Y are independent. For

0 ≤ t ≤ 1, let Z :=
√

1− tX +
√
tY , and let f(t) := E(Fβ(Z)). By the chain rule, we have

f ′(t) = E
n∑
i=1

∂F

∂xi
(Z)

(
Yi

2
√
t
− Xi

2
√

1− t

)
Using (∗) and the chain rule,

E

(
∂F

∂xi
(Z)Xi

)
=
√

1− t
n∑
j=1

E(XiXj)E

(
∂2F

∂xi∂xj
(Z)

)

E

(
∂F

∂xi
(Z)Yi

)
=
√
t

n∑
j=1

E(YiYj)E

(
∂2F

∂xi∂xj
(Z)

)
So, combining these equalities,

f ′(t) =
1

2

n∑
i,j=1

E

(
∂2F

∂xi∂xj
(Z)

)
[E(YiYj)− E(XiXj)]
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Now, by the definition of F , ∂F/∂xi =: pi(x) = eβxi/(
∑n

i=1 e
βxi). So, for fixed x, the numbers

pi(x), i = 1, . . . , n are nonnegative and sum to 1. Observe that

∂2F

∂xi∂xj
(x) =

{
β(pi(x)− pi(x)2) , i = j

−βpi(x)pj(x) , i 6= j

So,

n∑
i,j=1

∂2F

∂xi∂xj
(x)[E(YiYj)− E(XiXj)]

= β
n∑
i=1

pi(x)[E(YiYi)− E(XiXi)]− β
n∑

i,j=1

pi(x)pj(x)[E(YiYj)− E(XiXj)]

Also, since
∑n

i=1 pi(x) = 1, we have

n∑
i=1

pi(x)[E(YiYi)− E(XiXi)]

=
1

2

n∑
i,j=1

pi(x)pj(x)[E(YiYi)− E(XiXi) + E(YjYj)− E(XjXj)]

So, combining these equalities,

n∑
i,j=1

∂2F

∂xi∂xj
(x)[E(YiYj)− E(XiXj)]

=
β

2

n∑
i,j=1

pi(x)pj(x)[(E(YiYi) + E(YjYj)− 2E(YiYj))

− (E(XiXi) + EXjXj − 2EXiXj)]

=
β

2

n∑
i,j=1

pi(x)pj(x)[E(Yi − Yj)2 − E(Xi −Xj)
2]

That is, f ′(t) ≥ 0 for all 0 ≤ t ≤ 1. So,

E(F (Y )) = f(1) ≥ f(0) = E(F (X)) (∗∗)

Now,

max
i=1,...,n

xi = β−1 log eβmaxi=1,...,n xi ≤ β−1 log eβ
∑n
i=1 xi

≤ β−1 log(neβmaxi=1,...,n xi) = β−1 log n+ max
i=1,...,n

xi

That is, maxi=1,...,n xi ≤ Fβ(x) ≤ β−1 log n + maxi=1,...,n xi. So, letting β → ∞ in (∗∗)
concludes the theorem. �
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Theorem 6.8. (Talagrand’s Majorizing Measures Theorem) Suppose (Y1, . . . , Yn) is

a Gaussian random vector. Let X = {1, . . . , n}. For i, j ∈ X, define d(i, j) :=
√
E(Yi − Yj)2.

Let PX be the set of Borel probability measures on X. Define

γ2(X, d) := inf
µ∈PX

sup
x∈X

∫ ∞
0

√
log

(
1

µ(B(x, r))

)
dr

Then cγ2(X, d) ≤ E supi∈X Yi ≤ Cγ2(X, d).

6.2. Sub-Gaussian Processes.

Definition 6.9 (Sub-Gaussian Random Variable). A real-valued random variable X is
said to be sub-Gaussian if there exist c1, c2 > 0 such that

P(|X| > t) ≤ c1e
−c2t2 , ∀ t > 0.

Exercise 6.10. Let X be a real-valued random variable with mean zero. Then the following
are equivalent

• ∃ a > 0 such that, for all t > 0, EetX ≤ et
2a2/2.

• ∃ b > 0 such that, for all t > 0, P(|X| > t) ≤ 2e−bt
2
.

• ∃ c > 0 such that EecX
2 ≤ 2.

For all t ∈ R, define

ψ2(t) := et
2 − 1.

For a random variable X define

‖X‖ψ2
:= inf{t > 0: Eψ2(|X| /t) ≤ 1}.

6.3. General Empirical Processes.

6.4. Additional Comments.

7. Concentration of Empirical Processes

8. Deep Learning

Theorem 8.1 (PAC Learning Neural Networks).

9. Appendix: Basics of Complexity Theory

A Turing machine is a standard model of computation introduced by Turing in 1937.
Informally, a one-tape Turing machine is a computing device with a finite state control
device, a tape (with cells indexed by the positive integers), and a tape head that points to
(or scans) a given cell on the tape. At a given time (indexed by the positive integers), the
machine changes its state, writes a symbol on the cell to which is currently pointing, and
then moves the tape head one cell to the left or one cell to the right. Time is then increased
by one. The action of the machine at a given time is a function of its current state and of
the symbol that is currently scanned by the tape head. More formally:

Definition 9.1 (Turing Machine). A one-tape Turing machine is defined by

• Σ := a finite set (“alphabet”), together with a blank symbol {�}.
• Q := a finite set of “control states” ∪ {qaccept, qreject, qstart}.
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• δ : Σ×Q→ Σ×Q× {←,→}, the “transition function.”

A configuration of a Turing machine consists of

• the symbols on the tape up to and including its rightmost non-blank symbol,
• the current state of the control device (an element of Q), and
• the position of the tape head (an element of the positive integers).

So, if i+ 1, n are positive integers, if σ1, . . . , σn ∈ Σ, and if q ∈ Q, the string

σ1σ2 · · ·σiqσi+1σi+2 · · ·σn
represents the configuration of the Turing machine where the finite state control is in state
q, the tape head is currently scanning position i + 1 on the tape, and the contents of the
tape are σ1 · · ·σn.

Let x1, . . . , xn ∈ Σ r {�} and let x = x1x2 · · ·xn be the corresponding string. A Turing
machine then computes on the input x by doing the following.

• The Turing machine is initialized to the initial configuration C0 := qstartx1x2 · · ·xn.
• At any time step i ≥ 1, the Turing machine applies the transition function δ to

the previous configuration Ci−1 to obtain the next configuration Ci. So, if Ci−1 =
σ1σ2 · · ·σiqσi+1σi+2 · · · σn, we have δ(σi+1, q) =: (σ′, q′, a) for some σ′ ∈ Σ, q′ ∈ Q
and a ∈ {←,→}. We then define

Ci :=

{
σ1σ2 · · ·σi−1q

′σiσ
′σi+2σi+3 · · ·σn , if a =←

σ1σ2 · · ·σi−1σiσ
′q′σi+2σi+3 · · · σn , if a =→ .

• If at any time step k ≥ 1 the Turing machine enters a halting state (qaccept or qreject),
we say the machine halts and accepts (or rejects) input x in k steps.

If the machine halts in k steps, the computation of the machine on input x can be described
as a sequence of configurations C0, C1, . . . , Ck.

Remark 9.2. Modern computers do not directly implement Turing machines. Modern
computers more closely resemble RAM machines, or von Neumann machines.

Remark 9.3. A multi-tape Turing Machine is defined similarly to the above, except it has
one single input tape (where only the input state is written), one single output tape, a
constant number of other (“work”) tapes, the function δ is then a function of all of the tapes
and the current state of the finite control. When the configuration changes, each work tape
head overwrites the cell it is currently scanning, and each work tape head moves left or right
one cell.

Let Σ be a finite set (or “alphabet”) and let Σ∗ denote the set of finite strings of elements
of Σ.

Definition 9.4 (Decided). A set (or “language”) S ⊆ Σ∗ is recognized (or decided) by
a Turing Machine M if:

• If x ∈ S, then M(x) accepts.
• If x /∈ S, then M(x) rejects.

Definition 9.5 (Accepted). A set (or “language”) S ⊆ Σ∗ is accepted by a Turing
Machine M if:

• If x ∈ S, then M(x) accepts.
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• If x /∈ S, then M(x) does not accept.

Let N := {0, 1, 2, . . .}. For any x ∈ Σ∗, let |x| denote the length of the string x.

Definition 9.6 (Time Complexity). Let f : N → N. We say a set S ⊆ Σ∗ satisfies
S ∈ TIME(f(n)) if there exists a multitape Turing Machine M such that

• M recognizes S, and
• For all x ∈ S, M(x) halts within f(|x|) steps.

Definition 9.7 (Space Complexity). Let f : N → N. We say a set S ⊆ Σ∗ satisfies
S ∈ SPACE(f(n)) if there exists a multitape Turing Machine M such that

• M recognizes S, and
• For all x ∈ S, M(x) uses no more than f(|x|) squares of its work tapes. That is,
M(x) scans at most f(|x|) cells of its work tapes.

Definition 9.8 (Time Complexity for Functions). Let f : N → N. We say a function
g : Σ∗ → Σ∗ satisfies g ∈ FTIME(f(n)) if there exists a multitape Turing Machine M such
that

• For all x ∈ Σ∗, M(x) writes g(x) on its output tape, and
• M(x) halts within f(|x|) steps.

Definition 9.9 (Space Complexity for Functions). Let f : N → N. We say a function
g : Σ∗ → Σ∗ satisfies g ∈ FSPACE(f(n)) if there exists a multitape Turing Machine M such
that

• For all x ∈ Σ∗, M(x) writes g(x) on its output tape, and
• M(x) uses no more than f(|x|) squares of its work tapes.

Definition 9.10 (Complexity Class P). We define

P := ∪k≥1TIME(nk).

Definition 9.11 (Complexity Class NP). NP is the class of sets S ⊆ Σ∗ such that there
exists a Turing Machine V (a “verifier”) and a polynomial p : N→ N such that x ∈ S if and
only if: ∃ a string y ∈ Σ∗ of length at most p(|x|) such that V (x, y) accepts in time at most
p(|x|).

Definition 9.12 (NP-hard and NP-complete). A set S ⊆ Σ∗ is NP-hard if for all
T ∈ NP, there exists a logspace function g : Σ∗ → Σ∗ such that x ∈ S if and only if
g(x) ∈ T . And S is NP-complete if S ∈ NP and S is NP-hard.

The SAT problem is the following. Let n

Definition 9.13 (Satisfiability Problem SAT). Let f : {−1, 1}n → {−1, 1} be an un-
known function with query access . Decide whether or not there exists x1, . . . , xn ∈ {−1, 1}
such that f(x1, . . . , xn) = 1.

Theorem 9.14 (Cook-Levin, 1971). SAT is NP-complete.

NP can be equivalently defined using non-deterministic Turing Machines. A non-deterministic
Turing machine is defined by repeating the definition of a Turing machine, except the func-
tion δ is allowed to take multiple values. Then the computation of a non-deterministic Turing
machine can be viewed as a tree of configurations, rather than a sequence of configurations,
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since one configuration can transition to multiple different configurations. More specifically,
we associate a directed edge from configuration C to configuration C ′ if δ maps configura-
tion C to configuration C ′. A non-deterministic Turing machine accepts x ∈ Σ∗ in time
t > 0, t ∈ Z if there exists a path from the initial configuration to an accepting configuration
of length at most t. A non-deterministic Turing machine M accepts a set S ⊆ Σ∗ if: x ∈ S
if and only if M accepts x.

Intuitively, a non-deterministic Turing machine is a Turing machine that is allowed to
make arbitrary choices at each step of its computation.

A nondeterministic Turing machine can solve SAT is linear time using a binary tree of
configurations (Exercise).

Definition 9.15 (Non-deterministic Time Complexity). Let f : N→ N. We say a set
S ⊆ Σ∗ satisfies S ∈ NTIME(f(n)) if there exists a nondeterministic Turing Machine M
such that

• M recognizes S, and
• For all x ∈ S, when M has input x, the computation of M has no path longer than
f(|x|).

An equivalent definition of NP is then

NP := ∪k≥1NTIME(nk).

Definition 9.16 (Complexity Class #P). A function f : {0, 1}∗ → N is in #P if ∃ a
polynomial p : N→ N and a polynomial time Turing Machine M such that, for all x ∈ {0, 1}∗,

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣.
Equivalently, f is in #P if there is a polynomial time non-deterministic Turing machine M
such that, for all x ∈ {0, 1}∗, f(x) is equal to the number of accepting paths of M on input
x.

Informally, #P problems count the number of solutions to problems in NP.

Definition 9.17 (Complexity Class RP). RP is the class of sets S ⊆ Σ∗ such that there
exists a non-deterministic polynomial time Turing Machine M such that

• M accepts S, and
• If x ∈ S, then at least 1/2 of all computation paths of M(x) accept.

Informally, RP is a Turing machine that can use randomness at each of its computation
steps.

10. Appendix: Some Functional Analysis

Below, we consider either R or C as scalars. That is, we will be dealing with vector spaces
over the fields R or C, and we will only distinguish them where necessary. A topological
vector space is a Hausdorff topological space X that is also a vector space, such that:
the map (x, y) 7→ x − y from X × X → X is continuous , and the map (α, x) 7→ αx from
{scalars} ×X → X is continuous.

A normed linear space X is a vector space (over R or C) with a norm ‖·‖. A norm
is a function ‖·‖ : X → [0,∞) such that ‖x‖ ≥ 0 with equality if and only if x = 0,
‖αx‖ = |α| ‖x‖ for α a scalar, and ‖x+ y‖ ≤ ‖x‖ + ‖y‖. Using the norm, we see that
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d(x, y) := ‖x− y‖ is a metric, whose open balls define the metric topology on X. We refer
to this topology as the norm topology, or strong topology. Using the triangle inequality, one
can show that a normed linear space is also a topological vector space. A Banach space is
a normed linear space that is complete with respect to the norm topology. A vector subspace
Y ⊆ X is simply called a subspace, and will be closed unless otherwise stated. Also, unless
otherwise stated, A denotes the closure of A with respect to the norm topology.

An inner product is a function (·, ·) : X ×X → {scalars} that is linear in the first argu-
ment, conjugate linear in the second argument, Hermitian symmetric, and positive definite.
An inner product space is a vector space with an inner product. Defining ‖x‖ := (x, x)1/2

shows that an inner product space is a normed linear space (using the Cauchy-Schwarz
inequality). A Hilbert space is an inner product space that is complete in the norm topol-
ogy. Cauchy-Schwartz shows that the inner product is continuous with respect to the norm
topology, since

|(u, v)− (u0, v0)| ≤ |(u− u0, v)|+ |(u0, v − v0)| ≤ ‖u− u0‖ ‖v‖+ ‖v − v0‖ ‖u0‖

One can show that ‖x− y‖2 = ‖x‖2 − 2<(x, y) + ‖y‖2. In Hilbert space we have the par-
allelogram law ‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2, and the polarization identity

(u, v) = 1
4

∑
k i

k
∥∥u+ ikv

∥∥2
, where k = 0, 2 for X over R, and k = 0, 1, 2, 3 for X over C.

Actually, polarization holds in a Banach space if and only if it is a Hilbert space.
A continuous linear function L : (X, ‖·‖X) → (Y, ‖·‖Y ) is called a linear operator. One

can show that L is uniformly continuous if and only if it is continuous if and only if it contin-
uous at zero if and only if it is bounded, i.e. ‖L(x)‖Y ≤M ‖x‖X . Showing that continuity
at zero implies boundedness involves a scaling argument. Showing that boundedness implies
uniform continuity follows by linearity.

The least such M such that ‖L(x)‖Y ≤ M ‖x‖X is called the operator norm of L, and
it is denoted by ‖L‖. Note that the set of bounded linear maps B(X, Y ) from X to Y is
a normed linear space with respect to the operator norm topology. If Y is complete, then
B(X, Y ) is a Banach space. (Fix x ∈ X, observe Ln(x) → L(x), L achieves linearity using
subsequential arguments, etc.) Essentially by definition, we have ‖L‖ := sup‖x‖≤1 ‖L(x)‖. If
X, Y are Hilbert spaces, ‖L‖ = sup‖x‖≤1,‖y‖≤1 |〈L(x), y〉|. For L : H → H a linear operator
on a Hilbert space H, we can apply Thm. 10.2 to define the adjoint L∗. Here L∗(u) = v is
the unique v such that (L(w), u) = (w,L∗(u)). Moreover, ‖L‖ = ‖L∗‖ (using the formula for
‖L‖ from a few previous lines). More directly, we can observe that ‖A∗y‖2 = (AA∗y, y) ≤
‖A‖ ‖A∗y‖ ‖y‖, so ‖A∗‖ ≤ ‖A‖. Then, using that A∗∗ = A (take complex conjugates of the
definition of A∗) we see that ‖A‖ ≤ ‖A∗‖.

A linear functional on X is a bounded map from X to scalars (C or R). The space
of linear functionals is called the dual space of X, and is denoted by X∗. The norm of
x∗ ∈ X∗ is given by ‖x∗‖ := sup‖x‖≤1 |x∗(x)|.

A semi-norm N on a vector space X is a function N : X → R such that: ∀ x ∈ X,
N(x) ≥ 0 , N(αx) = |α|N(x), and N(x+ y) ≤ N(x) +N(y). A collection N of seminorms
is called separating if N(x) = 0 ∀ N ∈ N if and only if x = 0. For a seminorm N , define
SN(a, ρ) := {x ∈ X : N(x−a) < ρ}. SN(a, ρ) is called the open N ball of radius ρ centered
at a. A set of the form S = SN1(a, ρ1) ∩ · · · ∩ SNj(a, ρj) is called an open N ball centered
at a. Given X and N , let XN denote X with the topology given by open N balls. One can
check that XN is Hausdorff if and only if N is separating, and XN is a topological vector
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space when N is separating. Sometimes, XN is called a Fréchet space. For example,
consider the Schwartz class, S(R) = {f ∈ C∞ : xnf (k) ∈ L∞,∀n, k ≥ 0}, equipped with
the seminorms ‖f‖n,k = supx∈R

∣∣xnf (k)(x)
∣∣. Here N is separating since ‖f‖0,0 = 0 implies

f = 0.
A topological vector space is called locally convex if X has a neighborhood base at

zero consisting of convex sets. That is, for any neighborhood U of 0, ∃ V convex such that
0 ∈ V ⊆ U . It takes some work to show: if X is a topological vector space, and N is a family
of seminorms, then XN = X if and only if X is locally convex. As an example of the above
we define the weak topology of X, denoted by σ(X,X∗), as the topology on X induced by
the seminorms x 7→ ‖L(x)‖, L ∈ X∗. In particular, we can form a basis of neighborhoods of
x0 using the seminorms:

U(x0; ρ, x∗1, . . . , x
∗
n) := {x ∈ X :

∣∣x∗j(x)− x∗j(x0)
∣∣ < ε for j = 1, . . . , n}

Note that xn → x weakly (i.e. with respect to σ(X,X∗)) if and only if ∀ x∗ ∈ X∗, x∗(xn)→
x∗(x). A sequence {xn}n≥1 such that x∗(xn) converges for all x∗ ∈ X∗ is called weakly
Cauchy.

Analogously, we can define the weak∗ topology on X∗, denoted by σ(X∗, X). Here a
basis of neighborhoods of x∗0 ∈ X∗ is given by

U(x∗0, ε, x1, . . . , xn) := {x∗ ∈ X∗ : |x∗(xj)− x∗0(xj)| < ε for j = 1, . . . , n}

For X a normed linear space, define the canonical map ι : X → X∗∗ by ι(x)(x∗) = x∗(x).
One can check that ι is linear, and Thm. 10.5 shows that ι is an isometry:

‖ι(x)‖ = sup
‖x∗‖≤1

|ι(x)(x∗)| = sup
‖x∗‖≤1

|x∗(x)| = ‖x‖

In particular, ι : (X, σ(X,X∗))→ (ι(X), σ(X∗∗, X∗)) is a homeomorphism, from X with the
weak topology, to ι(X) ⊆ X∗∗ with the weak∗ topology (of X∗∗ acting on X∗). A Banach
space is said to be reflexive if ι : X → X∗∗ is onto.

Let K ⊆ X with X a topological vector space. A point x ∈ K is called an extreme point
if it is not contained in the interior of any segment {ty+ (1− t)z : t ∈ [0, 1], y, z ∈ K} ⊆ K.
By interior we mean {ty + (1− t)z : t ∈ (0, 1), y, z ∈ K}. If K is compact and convex, then
a face F ⊆ K is a subset such that: if y ∈ K is in the interior of a segment in K, then
the whole segment is in F . Let K be a nonempty compact, convex set. Denote the set

of extreme points of K by E(K). Define K̂ as the intersection of all compact, convex sets

containing E(K). By definition, K̂ ⊆ K and K̂ 6= ∅. An extreme face F of K is a face of
K where the only faces of F are ∅ and F .

Let µ be a probability measure. A subset H ⊆ L1(µ) is called uniformly integrable if,
for all ε > 0, ∃ η > 0 with sup

{∫
A
|f | dµ : µ(A) ≤ η, f ∈ H

}
≤ ε. (Uniform integrability has

a slightly different definition in the probability literature.)
An associative algebra A over a field F is a vector space over F with a bilinear, asso-

ciative multiplication: (ab)c = a(bc), a(b + c) = ab + ac, (a + b)c = ac + bc, and a(λc) =
(λa)c = λ(ac). A Banach algebra is a real or complex Banach space that is an associative
algebra such that ‖ab‖ ≤ ‖a‖ ‖b‖. Examples include: (C(X),C) for X a topological space,
B(V, V ), and L1(Rn) with convolution. Note that the latter has no identity. However, given
a (complex) Banach algebra without identity, if we let B := {(a, α) : a ∈ A, α ∈ C} = A⊕C,
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and we define (a, α)(b, β) := (ab+αb+βa, αβ) and ‖(a, α)‖ := ‖a‖+ |α|, then B has identity
e = (0, 1).

Let A be a Banach algebra with identity. Using power series (and that ‖an‖ ≤ ‖a‖n), we
see: if ‖a‖ < 1, then 1 − a is invertible (let (1 − a)−1 :=

∑
n≥0 a

n, so ‖(1− a)−1‖ ≤ 1
1−‖a‖).

Using similar arguments, we see that: the invertible elements U form an open set, and
the inverse map is continuous from U to itself. For a ∈ U and ‖x− a‖ < ‖a−1‖−1

, note that
‖a−1x− 1‖ = ‖a−1(x− a)‖ ≤ ‖a−1‖ ‖x− a‖ < 1, so 1− (1− a−1x) = a−1x has inverse b, so
1 = (ba−1)x and a−1xb = 1, so xb = a, x(ba−1) = 1, i.e. (ba−1) = x−1.

From now on, we assume that all Banach algebras A are complex and have an identity.
Let x ∈ A, and for convenience, λ denotes λ · 1 ∈ A. The spectrum of x is σ(x) := {λ ∈
C : x− λ is not invertible}. The resolvent set of x is ρ(x) := {λ ∈ C : x− λ is invertible}.
The resolvent of x is the function R(λ) = (x − λ)−1, defined for λ ∈ ρ(x). The spectral
radius is r(x) := sup{|λ| : λ ∈ σ(x)}.

From our analysis of the invertible elements, we see that r(a) ≤ ‖a‖. Thus, σ(a) is
bounded. In fact, it is compact, since ρ(a) is open (λ ∈ C 7→ a − λ ∈ A is continuous, and
ρ(a) = {λ : a − λ ∈ U}), so σ(a) = ρ(a)c is closed. Also, σ(a) 6= ∅. To see this, define a
weakly analytic function as a function φ from an open set V ⊆ C to a complex Banach
space A such that ξ ◦ φ is analytic for every ξ ∈ A∗. Using power series, one can show:
R(λ) = (a − λ)−1 is weakly analytic on ρ(a) and ‖R(λ)‖ → 0 as λ → ∞. So, if σ(a) is
empty, Liouville’s Theorem (for bounded analytic functions) says that ξ((a− λ)−1) ≡ 0, so
(a− λ)−1 ≡ 0 ∀λ, which is a contradiction.

For the power series argument, let λ0 ∈ ρ(a). Write a−λ = (1−λ0)(a−(a−λ0)−1(λ−λ0)).
Then a− λ is invertible if ‖(a− λ0)−1(λ− λ0)‖ < 1. Choose λ so the latter condition holds.
Then (a − λ)−1 =

∑
n≥0(a − λ0)−n(λ − λ0)n(a − λ0)−1. So ξ((a − λ)−1) =

∑
n≥0 ξ((a −

λ0)−n−1)(λ − λ0)n, i.e. ξ(R(λ)) is analytic (in particular, for λ ∈ ρ(a).) Now, (a − λ)−1 =
[λ(λ−1a− 1)]−1 = λ−1(λ−1a− 1)−1 and ‖(λ−1a− 1)−1‖ ≤ (1− |λ|−1 ‖a‖)−1 → 1 as λ→∞,
so ‖R(λ)‖ → 0 as λ→∞.

Below, B denotes a commutative Banach algebra with identity. A character α of B is
a nonzero multiplicative linear function on B, i.e. α(ab) = α(a)α(b). (A character is not
assumed to be bounded a priori, but this can be proven. See Thm. 10.23(9).) The spectrum

of B is the set B̃ of all characters of B. For a ∈ B, α ∈ B̃ define â(α) := α(a). The map

a 7→ â from B into C(B̃) is called the Gelfand map or canonical map.
An ideal I ⊆ B is closed under addition (within I) and multiplication by elements of B.

An ideal is called maximal if I 6= B and I is not contained in any larger proper ideal. Define
the singular elements S as the union of all maximal ideals in B. Define the radical of B
as the intersection of all maximal ideals in B. Since I ⊆ I ⊆ S is a proper ideal, we see that
maximal ideals are closed, so the radical is closed. B is called semisimple if its radical is
{0}.

An involution on a Banach algebra B is a map B → B written a 7→ a∗ such that: a∗∗ = a,
(a + b)∗ = a∗ + b∗, (λa)∗ = λa∗, and (ab)∗ = b∗a∗. Note that 1∗ = 1, since applying ∗ to
1 · 1∗ = 1∗ gives 1∗∗ · 1∗ = 1∗∗, so since 1∗∗ = 1, we get 1 · 1∗ = 1, so 1∗ = 1. We say a is
Hermitian if a = a∗, strongly positive if a = b∗b for some b, positive if σ(a) ⊆ [0,∞)
and real if σ(a) ⊆ R. An involution is symmetric if 1 + a∗a is invertible for all a ∈ B.

A Banach ∗ algebra B is called ∗ multiplicative if ‖a∗a‖ = ‖a∗‖ ‖a‖, ∗ isometric if
‖a∗‖ = ‖a‖, and ∗ quadratic if ‖a∗a‖ = ‖a‖2. One can show that the first two together
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are equivalent to the third. The forward direction is clear. For the reverse, observe that
‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖ ‖a‖, so ‖a‖ ≤ ‖a∗‖ (and also for a = b∗), so ‖a‖ = ‖a∗‖. Also,
‖a∗a‖ = ‖a‖2 = ‖a∗‖ ‖a‖. A B∗ algebra is a quadratic ∗ algebra. (In modern terminology
a C∗ algebra is a multiplicative ∗ algebra. From the equivalences just shown, a B∗ algebra
is also a C∗ algebra, and no one uses the term B∗ algebra anymore).

Let A,B ∈ B(H), i.e. let A,B be bounded linear operators on a Hilbert space H. Let ∗
denote the adjoint operation. Summarizing some properties of B(H), we have: A∗ is linear
and bounded with ‖A∗‖ = ‖A‖, A∗∗ = A, (αA+βB)∗ = αA∗+βB∗, ‖AB‖ ≤ ‖A‖ ‖B‖, and
(AB)∗ = B∗A∗. Also note that ‖A∗A‖ = ‖A‖2. This follows since ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ =
‖A‖2, and ‖Ax‖2 = (A∗Ax, x) ≤ ‖A∗A‖ ‖x‖2. From above, we saw that B(X) is a Banach
algebra whenever X is a Banach space. Thus, B(H) is a B∗ algebra.

In these notes, a C∗-algebra on a Hilbert space H is a subalgebra A of B(H) which is
closed in norm and such that A ∈ A implies A∗ ∈ A. A subalgebra closed under taking
adjoints is called a ∗ subalgebra of B(H). Note that B(H) is a C∗-algebra. A maximal
abelian self-adjoint (m.a.s.a.) algebra on H is a commutative algebra A ⊆ B(H) which
is not contained in any larger commutative subalgebra, and such that A is a ∗-subalgebra.
Let S ⊆ B(H). Define S ′ = {A ∈ B(H) : AB = BA, ∀B ∈ S}. S ′ is then a subalgebra of
B(H) for any set S, and we call S ′ the commutor algebra of S.

Let (X,µ) be a measure space. Let f ∈ L∞(µ). Define Mf : L2(µ)→ L2(µ) by Mf (g) :=

fg. Since fg ∈ L2 for g ∈ L2, Mf is everywhere defined, and ‖Mfg‖2
2 ≤ ‖f‖

2
∞ ‖g‖

2
2.

Therefore, ‖Mf‖ ≤ ‖f‖∞. Note also that Mfg = MfMg,Mαf+βg = αMf + βMg,M
∗
f = Mf .

Unless otherwise specified, in this Section for a measure space (X,µ), we assume: every
measurable set in X of positive measure contains a subset of finite strictly positive measure.
(That is, µ has no infinite atoms). Under this assumption, ‖Mf‖ = ‖f‖∞, which can be
proven by considering the indicator function where |f | = a for ‖f‖∞ > a > 0 (if such an
a exists). The multiplication algebra, denoted by M(X,µ), of (X,µ) is the algebra of
operators on L2(X,µ) consisting of all Mf , f ∈ L∞.

Let D(w, ε) = {z ∈ C : |z − w| < ε}. If f ∈ L∞(X,µ), define the essential range of f as
{w ∈ C : µ(f−1(D(w, ε))) > 0 for all ε > 0}. For (X,µ) with no infinite atoms, an exercise
shows: σ(Mf ) = essential range of f . Let A be a subalgebra of B(H). A vector x ∈ H is
called a cyclic vector for A if Ax := {Ax : A ∈ A} is dense in H. A unitary operator
U : H → K between two Hilbert spaces is a linear surjective operator such that ‖Ux‖ = ‖x‖
∀x ∈ H. To emphasize the surjectivity, we write U : H � K.

A bounded operator A : H → H is called: normal if A∗A = AA∗, Hermitian if A = A∗,
unitary if A is onto and ‖Ax‖ = ‖x‖ ∀x ∈ H, and orthogonal if H is real and A is unitary.
Suppose H is a Hilbert space, A : H → H is linear, and (Ax, x) = 0 for all x ∈ H. Then
(a) if H is complex, then A = 0 (b) if H is real and A∗ = A then A = 0. To prove this, we
observe:

(A(x+ y), x+ y)− (A(x− y), (x− y)) = 2(Ax, y) + 2(Ay, x)

So (Ax, y) + (Ay, x) = 0. If H is real and A = A∗, this yields (Ax, y) = 0 for all x, y, so
A = 0. For H complex, we can get the same conclusion by writing (Ax, y) + (Ay, x) = 0 and
substituting x 7→ ix to get i(Ax, y)− i(Ay, x) = 0, etc.

Using the above we see: a linear function is unitary if and only if U is bounded and
UU∗ = U∗U = id. If the latter holds, then ‖Ux‖2 = (U∗Ux, x) = ‖x‖2, and U(U∗x) = x, so
U is onto. In the reverse direction, if U is unitary, then ((U∗U−id)x, x) = ‖Ux‖2−‖x‖2 = 0,
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so from the above we see that U∗U − id = 0. Using surjectivity of U (given x, let y such
that Uy = x) we have UU∗x = UU∗Uy = Uy = x, so UU∗ = id.

Let (X,µ) be a σ-finite measure space, and let f ∈ L∞. Using that M∗
f = Mf , one can see

that: (1) Mf is normal, (2) Mf is Hermitian if and only if f is real a.e. (i.e. f = f a.e.), and

(3) Mf is unitary if and only if |f | = 1 a.e. (i.e. ff = 1 a.e.). A sequence An of operators
on a Banach space B converges strongly to a bounded operator A if Anx→ Ax for each
x ∈ B. An converges weakly if 〈Anx, y〉 → 〈Ax, y〉 ∀x ∈ B, y ∈ B∗. If B is a Hilbert
space, weak convergence is therefore: (Anx, y)→ (Ax, y) ∀x, y ∈ H.

Let X be a set and let S be a σ-field in X. A projection valued measure on S is a function
E(·) from S to projections on a Hilbert space H such that: (1) E(∅) = 0, (2) E(X) = id,
(3) E(A ∩B) = E(A)E(B), A,B ∈ S and (4) If A1, A2, . . . is a disjoint sequence in S then

E(∪∞n=1An) =
∞∑
n=1

E(An) , a strongly convergent sum

Let (X,S) be a measurable space and E(·) a projection valued measure on S with values
in B(H). If f =

∑n
j=1 ajχBj is a simple complex valued measurable function on X, define

the integral with respect to E as ∫
fdE :=

n∑
j=1

ajE(Bj)

We now consider unbounded functions on Banach spaces. Let T : X → Y be a (possibly
unbounded) function. If D ⊆ X is dense, and T : D → Y , we say that T is densely defined.
If T is a function from X to Y with domain D, the graph of T is GT := {(x, Tx) : x ∈ D}.
We say that T is closed if GT ⊆ X × Y is closed.

Let H be a Hilbert space. Let T : H → H be linear and densely defined with domain D.
Define DT ∗ as follows: y ∈ DT ∗ if and only if the map x 7→ (Tx, y) is continuous from D to
C. For such a y, ∃ a unique y∗ ∈ H such that (Tx, y) = (x, y∗) (by Riesz representation,
Thm. 10.2). We define T ∗y := y∗. Thus,

(Tx, y) = (x, T ∗y) ∀x ∈ DT , y ∈ DT ∗

Write A ⊆ B if A = B on their common domains, and DA ⊆ DB. An important property
is: if A ⊆ B, then B∗ ⊆ A∗. (Since B ⊇ A, there are more x’s to check that x 7→ (Bx, y) is
continuous, so less y’s will satisfy this condition, so DB∗ ⊆ DA∗).

Let A be densely defined in H. A is symmetric if A ⊆ A∗ (i.e. (Ax, y) = (x,Ay)
∀x, y ∈ DA). A is called self-adjoint if A = A∗ (i.e. DA = DA∗ , and the operators agree on
this domain.) A linear operator A : H → K between Banach spaces H,K is compact if the
image of every bounded set has compact closure.

A semigroup of operators on a Banach space B is a function s 7→ Ts from [0,∞) to
bounded operators on B such that: T0 = id and Tt+s = TtTs for s, t ≥ 0. A semigroup is
called strongly continuous if for each x ∈ B, the function t 7→ Ttx is continuous from
[0,∞) into B. Note that norm continuity of a semigroup (i.e. continuity of ‖Tt − Ts‖)
is stronger than strong continuity, since ‖Ttx− Tsx‖ ≤ ‖Tt − Ts‖ ‖x‖ → 0 as t → s. A
semigroup of operators is called a contraction semigroup if ‖Tt‖ ≤ 1 for all t ≥ 0. If
Tt : B → B is a semigroup of linear operators, define Af := limh↓0

Th−id
h

f with domain
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DA := {f ∈ B : Af exists}. Then A is called the infinitesimal generator of the semigroup
Tt. From the definition, we can see that A is a linear function on DA.

For a ≤ t ≤ b let ut : [a, b] → B. We say ut is strongly continuous at the point t if
limh→0 ut+h = ut. If limh→0

ut+h−ut
h

= f , then ut is strongly differentiable at the point
t and f =: dut/dt. Let a = t0 < t1 < · · · < tn = b and δ := max1≤k≤n |tk − tk−1|. If
limδ→0

∑n
k=0 utk(tk− tk−1) exists, then the function ut is said to be strongly integrable on

the interval [a, b], and the limit is denoted by
∫ b
a
utdt.

If ut is strongly continuous on [a, b], then by mimicking the theory of the Riemann in-
tegral, ut is strongly integrable on [a, b]. Let T : B → C, ut : [a, b] → B. If ut is strongly

differentiable, then Tut is also strongly differentiable and d(Tut)
dt

= T
(
dut
dt

)
. If ut is strongly

integrable on [a, b], then Tut is also strongly integrable on [a, b] and
∫ b
a
Tutdt = T (

∫ b
a
utdt).

If ut is strongly integrable on the interval [a, a + h] and strongly continuous from the right

at a, then limh↓0
1
h

∫ a+h

a
utdt = ua.

If dut/dt is strongly continuous on [a, b], then
∫ b
a
dut
dt
dt = ub − ua. To see this, let ξ be a

linear functional. One of our properties above shows that d(ξut)/dt is Riemann integrable.
So, using our other properties and the fundamental theorem of calculus for Riemann integrals,

ξ

(∫ b

a

dut
dt
dt

)
=

∫ b

a

ξ

(
dut
dt

)
dt =

∫ b

a

d(ξ(ut))

dt
= ξ(ub)− ξ(ua)

Since the weak topology is Hausdorff, we conclude that
∫ b
a
dut
dt
dt = ub − ua, as desired.

If ut is strongly integrable on [a, b] then ut−h is strongly integrable on [a + h, b + h] and∫ b+h
a+h

ut−hdt =
∫ b
a
utdt.

Let A : B → B be a bounded operator. Define the exponential function by eA :=
limN→∞

∑N
n=0

1
n!
An. Since ‖An/n!‖ ≤ ‖A‖n /n!, the limit in the definition of eA exists, and∥∥eA∥∥ ≤ e‖A‖. Note that ec·id = ec·id. Also, if AA′ = A′A, then eAeA

′
= eA+A′ (using the same

proof as in the case of the usual exponential function). We now show that ‖ etA−id
t
−A‖ → 0

as t→ 0. Indeed,
∥∥etA − id− tA∥∥ ≤∑∞n=2

‖A‖n
n!
tn = et‖A‖− 1− t ‖A‖. So, dividing by t and

letting t → 0 gives ‖ etA−id
t
− A‖ ≤ et‖A‖−1

t
− ‖A‖ → 0 as t → 0. Now, if AA′ = A′A, and if

for t ≥ 0
∥∥etA∥∥ ≤ 1,

∥∥etB∥∥ ≤ 1, then for any f ∈ B,
∥∥etAf − etBf∥∥ ≤ t ‖Af −Bf‖. To see

this, note that

etAf − etA′f = (e
tA
n )nf − (e

tA′
n )nf =

(
n∑
k=1

e
k−1
n
tAe

n−k
n
tB

)
(e

tA
n f − e

tA′
n f)

So, ‖etAf −etA′f‖ ≤ n‖etA/nf −etA′/nf‖. But etA/n−id
t/n

→ A and etA
′/n−id
t/n

→ A′ as n→∞, so

n(etA/n−etA′/n)→ t(A−B) as n→∞. So, letting n→∞ gives ‖etAf−etA′f‖ ≤ t ‖A−B‖,
as desired.

Theorem 10.1. (Hilbert space projections) Let H be a Hilbert space, W ⊆ H a closed
convex set, u ∈ H, M ⊆ H a closed subspace. Define M⊥ := {h ∈ H : (h,m) = 0,∀m ∈M}.

(a) ∃ v ∈ W with ‖u− v‖ = infw∈W ‖u− w‖.
(b) Every u ∈ H can be uniquely written as u = m+ v, m ∈M , v ∈M⊥. (We therefore

write H = M ⊕M⊥)
(c) (M⊥)⊥ = M
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Proof of (a): Let a := infw∈W ‖u− w‖. Let {wn} ⊆ W be a minimizing sequence. The
parallelogram law says

‖2u− (wn + wm)‖2 + ‖wn − wm‖2 = 2(‖u− wm‖2 + ‖u− wn‖2)→ 4a2 (∗)

as m,n → ∞. But 1
2
(wn + wm) ∈ M , so 4

∥∥u− 1
2
(wn + wm)

∥∥2 ≥ 4a2, by definition of a.

Then from the left side of (∗), ‖wn − wm‖2 → 0, so {wn} is Cauchy, i.e. v := limwn exists,
and continuity of the norm gives ‖u− v‖ = a.

(b): First observe that M⊥ is closed and M ∩M⊥ = 0 by definition of M⊥. Uniqueness
follows since M ∩M⊥ = 0. To get existence, use part (a) to find v ∈ M with ‖u− v‖ =
infm∈M ‖u−m‖. Let m ∈ M with ‖m‖ = 1. Then v + (u− v,m)m ∈ M , and by definition
of v,

‖u− v‖2 ≤ ‖u− v − (u− v,m)m‖2 = ‖u− v‖2 − |(u− v,m)|2

Thus (u− v,m) = 0, i.e. u− v ∈M⊥, so u = v + (u− v).
(c): By definition, M ⊆ M⊥⊥. For u ∈ M⊥⊥, apply part (b) to get u = m + m⊥, so

0 = m⊥+(m−u), m⊥ ∈M⊥,m−u ∈M⊥⊥. Apply part (b) again to M⊥, so H = M⊥⊕M⊥⊥.
By uniqueness of this decomposition for 0 ∈ H, we conclude m⊥ = 0, m − u = 0, so
u = m ∈M , i.e. M⊥⊥ = M . �

Theorem 10.2. (Riesz Representation Theorem, Hilbert space version) Let ` be a
continuous linear functional on a Hilbert space H. Then ∃ unique v ∈ H with `(u) = (u, v).
Also, ‖`‖ = ‖v‖.

Proof. Uniqueness is clear. For existence, if ` = 0 take v = 0. Otherwise let M = {u : `(u) =
0}. Observe that M is a closed subspace and M 6= H. So we can let w 6= 0, w ∈ M⊥, via

Thm. 10.1(b). Then `(w) 6= 0. Let v = (`(w)/ ‖w‖2)w. Then `(u − (`(u)/`(w))w) = 0, so
u− (`(u)/`(w))w ∈M , and v ∈M⊥ so

〈u, v〉 =

〈
u−

(
u− `(u)

`(w)
w

)
, v

〉
=

〈
`(u)

`(w)
w,

`(w)

‖w‖2w

〉
= `(u)

Finally, Cauchy-Schwarz shows |`(u)| = |(u, v)| ≤ ‖u‖ ‖v‖ and |(v, v)| = |`(v)| ≤ ‖`‖ ‖v‖. �

Theorem 10.3. (Hahn-Banach, Abstract Form) Let X be a real vector space, and let
p : X → R be a function such that p(x+ x′) ≤ p(x) + p(x′) and p(tx) = tp(x) (x, x′ ∈ X, t ≥
0, t ∈ R). Let f be a linear functional on a subspace Y of X with f(y) ≤ p(y) for all y ∈ Y .
Then ∃ a linear functional F on X with F (y) = f(y) ∀ y ∈ Y , and such that F (x) ≤ p(x)
∀ x ∈ X.

(Hahn-Banach, Functional Form) Let Y ⊆ X be a vector subspace of the normed
linear space X. Let y∗ ∈ Y ∗. Then ∃ x∗ ∈ X∗ with ‖x∗‖ = ‖y∗‖ and x∗(y) = y∗(y), ∀ y ∈ Y .

Proof of Abstract Form: Trick: use Zorn’s Lemma, and then extend by one dimension.
For any two linear functionals (f1,Dom(f1)), (f2,Dom(f2)) that are dominated by p, write
f1 ≤ f2 if f1 = f2 on Dom(f1)∩Dom(f2), and Dom(f1) ⊆ Dom(f2). Thus, f1 ≤ f2 if and only
if f2 extends f1. Any chain of such extensions has an upper bound F . (For x ∈ ∪αDom(fα),
x ∈ Dom(fα0) for some α0, so define F (x) := fα0(x).) By construction, F is then linear,
since x, y ∈ Dom(F ) implies x, y ∈ Dom(fα1) for some α1. By Zorn’s Lemma, we can let
(f0, Y0) be a maximal extension. It remains to prove Y0 = X, by contradiction.
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Assume y1 ∈ X, y1 /∈ Y0. Let Y1 = span{y1, Y0}. A simple argument shows: every
x ∈ Y1 can be written uniquely as x = y + cy1, y ∈ Y0, c ∈ R. Define f1 on Y1 by
f1(y + cy1) := f0(y) + ck for some k ∈ R, chosen below. It remains to show that f1 ≤ p on
Y1. Let y, y′ ∈ Y0 and observe:

f0(y′)− f0(y) = f0(y′ − y) ≤ p(y′ − y) ≤ p(y′ + y1) + p(−y1 − y)

That is,
−p(−y1 − y)− f0(y) ≤ p(y′ + y1)− f0(y′) (∗)

Let k be any number between: the sup of the left side of (∗) over y ∈ Y0, and the inf of the
right side of (∗) over y′ ∈ Y0. We need three cases. If c = 0, then f1(x) = f0(x) ≤ p(x). If
c > 0, then for x = y + cy1, the choice of k for y′ = c−1y gives

f1(x) = f0(y) + ck ≤ f0(y) + c(p(c−1y) + y1 − f0(c−1y)) = p(y + cy1) = p(x)

If c < 0, then for x = y + cy1, the choice of k for y′ = c−1y gives

f1(x) = f0(y) + ck ≤ f0(y) + c(−p(y1 − c−1y)− f0(c−1y)) = p(y + cy1) = p(x)

So, f1(x) ≤ p(x), contradicting the maximality of f0.
Proof of Functional Form: If the scalars are real, apply part (a) to p(x) = ‖y∗‖ ‖x‖,

f = y∗. If the scalars are complex, extend <(y∗) to F : X → R via part (a), then define
x∗(x) := F (x)− iF (ix). One can check that x∗ is complex linear. Also, for y ∈ Y

(< y∗)(iy) + i(= y∗)(iy) = y∗(iy) = iy∗(y) = −(= y∗)(y) + i(< y∗)(y)

so (< y∗)(iy) = −(= y∗)(y), implying that

x∗(y) = (< y∗)(y)− i(< y∗)(iy) = (< y∗)(y) + i(= y∗)(y) = y∗(y)

so that x∗ extends y∗. If x∗(x) = reiθ, then =(x∗(e−iθx)) = 0 = −F (ie−iθx), so

|x∗(x)| = x∗(e−iθx) = F (e−iθx) ≤ ‖y∗‖ ‖e−iθx‖ = ‖y∗‖ ‖x‖
�

Theorem 10.4. (Hahn-Banach, Geometric form, a) Let Y be a closed subspace of a
normed linear space X. Let x0 ∈ X, x0 /∈ Y . Then ∃ x∗ ∈ X∗ such that x∗(Y ) = 0 and
x∗(x0) = 1, with ‖x∗‖ = d(x0, Y )−1.

(Hahn-Banach, Geometric form, b) Let X be a real normed linear space, C ⊆ X
a convex open set containing 0. If x0 ∈ X, x0 /∈ C, then ∃ φ : X → R continuous with
φ(x0) = 1 and φ(C) < 1

(Hahn-Banach, Geometric form, c) Let X be a locally convex linear space (that is,
0 has a neighborhood basis of convex sets), A,B ⊆ X disjoint, convex, with A open. Then ∃
a continuous linear functional f on X and α ∈ R such that <(f(A)) < α and <(f(B)) ≥ α.

(Hahn-Banach, Geometric form, d) Let X be a locally convex space, A,B ⊆ X
disjoint closed convex sets, A compact. Then ∃ a continuous linear functional f on X and
α ∈ R such that <(f(A)) < α and <(f(B)) > α.

Proof of (a): Let d = d(x0, Y ), Z = span{x0, Y }. As above, every x ∈ Z can be
written uniquely as x = y + cx0. Define z∗(x) := c. Then z∗ is linear and for c 6= 0,
and ‖x‖ = |c| ‖c−1y + x0‖ ≥ |c| d = d |z∗(x)|. Thus, ‖z∗‖ ≤ d−1. Letting ‖x0 − yn‖ → d,
{yn} ∈ Y shows 1 = z∗(x0 − yn) ≤ ‖z∗‖ ‖x0 − yn‖ → d ‖z∗‖, so ‖z∗‖ ≥ d−1. Finally, apply
Thm. 10.3(b) to extend z∗.
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Proof of (b): (Sketch) On the one-dimensional space span{x0}, define φ(tx0) = t. Ob-
serve that φ is dominated by the norm induced by C (‖y‖C := inf{r > 0: y ∈ rC}). Apply
Thm. 10.3(a).

Proof of (c): (Sketch) Assume scalars are real. Let a0 ∈ A, b0 ∈ B, x0 := b0 − a0,
C := A− B + x0. Then C is convex, open, and it contains zero. Also, x0 /∈ C. Apply part
(b) to C and x0. Observe φ(b0) = φ(a0)+1 and φ(a) < φ(b)+φ(a0)−φ(b0)+1, a ∈ A, b ∈ B,
so φ(a) < φ(b). Let α = infb∈B φ(b), so φ(a) ≤ α ≤ φ(b). Since A is open, φ(a) = α cannot
occur, so φ(a) < α.

Proof of (d): We claim that C := B −A is closed. Given the claim, note that 0 /∈ C, so
Cc contains an open neighborhood U of 0. So apply part (c) to U and B − A to get some
real nonconstant continuous linear functional with f(B − A) ≥ c and f(U) ≤ c. Let x ∈ X
such that f(x) = 1. For α > 0 small, αx ∈ U . Since f(αx) = α, f(U) ⊇ [0, ε) for some
small ε. Therefore, f(B)− f(A) = f(B − A) ≥ ε, as desired.

We now prove that C = B − A is closed. Let d ∈ B − A, U a neighborhood of d,
AU := {a ∈ A : a ∈ B − U}. Note that AU 6= ∅ since d ∈ B − A. (Let dn → d, dn ∈ B − A.
Without loss of generality, dn ∈ U . Then dn = bn − an, so an = bn − dn, dn ∈ U . Since A is
compact, after taking a subsequence we may assume that an → a, a ∈ A, so bn → b as well.
Since B is closed, b ∈ B. Now d = lim(bn − an) = b− a, b ∈ B, a ∈ A, so a = b− d ∈ AU , as
desired.)

Observe U ⊆ V implies AU ⊆ AV . So, any finite subset of the sets {AU} has the nonempty
intersection. So, the compact sets {AU} have a common element a0. (If not, then ∩UAU is
empty. Write AU =: Ar BU . Since ∩UAU = ∩U(Ar BU) = Ar (∪UBU), ∪UBU = A. But
BU is open and A is compact, so A = ∪ni=1BUi , implying ∩ni=1AUi = ∅, a contradiction.)

Let N be a neighborhood of 0. Then U = N + d is a neighborhood of d, so a0 ∈ B −U =
B −N − d, so (N + a0) ∩ (B −N − d) 6= ∅. Shifting an N from the right to the left, we get
(N +N +a0)∩ (B−d) 6= ∅. Let M be a neighborhood of 0. By continuity of addition, there
exists an open neighborhood N of 0 such that N + N ⊆ M . So, any neighborhood of a0

intersects B − d. Since B is closed, B − d is closed. Therefore, by the limit point definition
of closedness, a0 ∈ B − d, so d ∈ B − a0 ⊆ B − A, as desired. �

Theorem 10.5. (Hahn-Banach Corollaries) Let X be a normed linear space. If x0 ∈ X,
x0 6= 0, then ∃ x∗ ∈ X∗ with ‖x∗‖ = 1 and x∗(x0) = ‖x0‖. Thus, setting x0 = x− x′, we see
that the weak topology is Hausdorff. Also, ‖x0‖ = sup‖x∗‖≤1 |x∗(x0)|.
Proof. First, use Thm. 10.4(a) with Y = 0. The formula for ‖x0‖ follows, since sup‖x∗‖≤1 |x∗(x0)| ≤
sup‖x∗‖≤1 ‖x∗‖ ‖x0‖ = ‖x0‖. �

Theorem 10.6. (Uniform Boundedness Principle/ Banach-Steinhaus) Let {Lα}
be a set of bounded linear operators from a Banach space X into a normed linear space Y .
Assume the Lα are pointwise bounded, i.e. ‖Lα(x)‖ ≤ Cx for all α. Then ∃ C with ‖Lα‖ ≤ C
for all α (C independent of x).

Proof. Let Fn := {x ∈ X : ‖Lα(x)‖ ≤ n,∀α}. Since Fn = ∩α(‖·‖ ◦ Lα)−1[0, n], Fn is closed.
By assumption, ∪nFn = X. Since X is a complete metric space, Baire’s Category Theorem
shows that some FN contains a nonempty open ball B = B(b, 2r) ⊆ X. Then ‖Lα(x)‖ ≤ N
for all α and for all x ∈ B. Dilating and translating B gives our result. Specifically, for
‖x‖ ≤ 1 we have rx+ b ∈ B, so

‖Lα(x)‖ = r−1 ‖Lα(rx)‖ ≤ r−1(‖Lα(rx+ b)‖+ ‖Lα(b)‖) ≤ r−1(N + Cb)
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i.e. ‖Lα‖ ≤ r−1(N + Cb). �

Theorem 10.7. (Interior Mapping (Open Mapping) Principle)

(a) Let L : X → Y be a continuous linear operator between Banach spaces, which is onto.
Then L is open (i.e. its inverse is continuous, if it exists).

(b) Suppose L(BX) contains an open ball. (BX := {x : ‖x‖ ≤ 1} = B(0, 1)). Then
∃r > 0 with L(BX) ⊇ r ·BY , and (by scaling) L(X) = Y .

Proof of (a): Trick: Baire, show L is open at zero by approximations, then translate.

Let B(0, n) = {x : ‖x‖ < n}. Write Y = L(X) = L(∪n≥1B(0, n)) = ∪n≥1L(B(0, n)). Thus

Y = ∪n≥1L(B(0, n)). Baire’s Category Theorem says some L(B(0, n)) contains an open

ball. By scaling (and using continuity) L(B(0, n)) = (2n)L(B(0, 1/2)), so L(B(0, 1/2)) also

contains an open ball V . A continuity argument shows that V −V ⊆ L(B(0, 1)). (Let v, v′ ∈
L(B(0, 1/2)), let vn, v

′
n ∈ L(B(0, 1/2)) with vn → v, v′n → v′. Then vn − v′n ∈ L(B(0, 1)),

vn − v′n → v − v′ ∈ L(B(0, 1)).) Since V − V is open, it is also a neighborhood containing

zero. Thus, L(B(0, 1)) ⊇ B(0, s) for some s > 0. Using continuity again,

L(B(0, t)) ⊇ B(0, st) ∀ t > 0 (∗)

We now show that L(B(0, c)) ⊇ B(0, sc/2) for all c > 0. Let y ∈ B(0, sc/2). Using (∗)
with t = c/2 gives x1 ∈ B(0, c/2) with ‖y − L(x1)‖ < 2−2sc. Suppose x1, . . . , xn−1 satisfy
‖y − L(x1 + · · ·+ xn−1)‖ < 2−nsc. Then y − L(x1 + · · · + xn−1) ∈ B(0, 2−nsc), so (∗) with

t = 2−nc gives xn ∈ B(0, 2−nc) with ‖y − L(x1 + · · ·+ xn)‖ < 2−(n+1)sc. Since the norms of
the xn decrease exponentially, x =

∑∞
n=1 xn exists and ‖x‖ ≤ c. By definition of the xi and

since L is continuous we get y = L(x), x ∈ B(0, c), as desired.
So, L(B(0, 2c)) ⊇ B(0, sc/2). By translating this result, we see: for U open, each w ∈ L(U)

has a neighborhood contained in L(U), as desired.
Proof of (b): Argue as in part (a). �

Theorem 10.8. (Closed graph theorem) Let L : X → Y be a linear function between
Banach spaces. Suppose the graph G := {(x, L(x)) : x ∈ X} of L is closed in X × Y . (If
xn → x and f(xn)→ y, then x ∈ Dom(L) and f(x) = y). Then L is bounded.

Proof. Trick: Use a projection. Define the Banach space X ⊕ Y via the norm ‖(x, y)‖ :=
‖x‖X + ‖y‖Y . By assumption, G ⊆ X ⊕ Y is closed. In particular, G is a Banach space.
Define P : G → X by P ((x, L(x))) = x, and observe that P is linear, continuous and
bijective. Therefore, P−1(x) = (x, L(x)) is continuous, from the Interior Mapping Principle
(Thm. 10.7(a)). Finally, note that the projection Π: X ⊕ Y → Y defined by Π(x, y) := y is
bounded, so Π|G is bounded, so (Π|G) ◦ P−1 = L is bounded. �

Theorem 10.9. (Choquet) Let X be a metrizable, compact, convex subset of a locally
convex space E. Let x0 ∈ X. Then ∃ a probability measure µ = µx0 on X that is supported
on the extreme points E(X) of X, and such that x0 =

∫
E(X)

xdµ(x) weakly. (That is, for any

continuous linear functional F on X, F (x0) =
∫
E(X)

F (x)dµ(x)).

Proof. Strategy: consider X∗ ⊆ C(X), construct a strictly convex function, apply Hahn-
Banach. By Thm. 10.10, C(X) is separable. Let A ⊆ C(X) be the set of continuous affine
functions. Let {hn}∞n=1 ⊆ A be dense on the unit sphere of A. Observe that f =

∑
n≥1 2−nh2

n
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converges uniformly and is strictly convex and nonnegative. Let B = span{A, f}. For
g ∈ C(X), define g(x) := inf{h(x) : h ∈ A, h ≥ g} (this is the upper concave envelope of the
graph of g). Since g + u ≤ g + u, p(g) := g(x0) is a subadditive function on C(X), which is
also homogeneous. Define ` : B → R by `(h+ rf) = h(x0) + rf̄(x0). On B, note that ` ≤ p.
(For r > 0, h+ rf = h+ rf , and for r < 0, h+ rf is concave, so h+ rf = h+ rf ≥ h+ rf).

Since ` ≤ p on B, Hahn-Banach (Thm. 10.3(a)) gives m ∈ C(X)∗ which extends ` and
remains dominated by p. Since m ≤ p, m is nonpositive on nonpositive functions, and
Riesz’s Representation Theorem shows m(f) =

∫
fdµ for µ a regular Borel (probability)

measure (using 1 ∈ A, so m(1) = 1). Now, f ≤ f so µ(f) ≤ µ(f). Conversely, if h ∈ A
and h ≥ f , then h ≥ f , so h(x0) = m(h) = µ(h) ≥ µ(f). So, taking the infimum over
h ∈ A, h ≥ f , we get f(x0) ≥ µ(f). But µ(f) = m(f) = f(x0), so µ(f) ≥ µ(f). Thus,
µ(f) = µ(f), i.e. µ vanishes outside E := {x : f(x) = f(x)}. Finally, E is supported
on the extreme points of X, since if x = (1/2)(y + z), then strict convexity of f implies
f(x) < (1/2)(f(y) + f(z)) ≤ (1/2)(f(y) + f(z)) ≤ f(z). (And actually, E is equal to the
extreme points). �

Theorem 10.10. (Separability Conditions) Let X be a locally compact separable metric
space, with µ a Borel measure on X. For 1 ≤ p <∞ we have

(a) (Cc(X), ‖·‖sup) is a separable normed linear space

(b) Lp(X,µ) is separable

Theorem 10.11. (Characterization of Locally Convex Spaces) Let X be a topological
linear space. Let N be the family of continuous semi-norms on X. Let XN be the Fréchet
space formed by X and N . Then XN = X iff X is locally convex

Theorem 10.12. (Alaoglu Theorem/ Banach-Alaoglu) Let X be a normed linear
space. Then the unit ball BX∗ = {x∗ : ‖x∗‖ ≤ 1} of X∗ is weak∗ compact.

Proof. Let A be the set of scalar valued functions ξ on X with ‖ξ(x)‖ ≤ ‖x‖ for all x ∈ X.
Equivalently, A =

∏
x∈X{λ ∈ {scalars} : |λ| ≤ ‖x‖}. Then A with the product topology is

compact by Tychonoff’s Theorem. By the definition of the product topology, a basic open
neighborhood of some ξ0 is {ξ : |ξ(xj)− ξ0(xj)| < ε, j = 1, . . . , n}. Now for fixed x ∈ X,
the projection map ξ 7→ ξ(x) is continuous, from A (with the product topology) to scalars.
(Given ξ in the inverse image of a small open interval, ξ is contained in an open set in A).
Consider the natural embedding BX∗ ⊆ A. By the definition of the weak∗ topology, the
topology induced by BX∗ ⊆ A is exactly the weak∗ topology.

Putting everything together, let x, y ∈ X, α, β scalars, and observe: ξ(αx+βy)−αξ(x)−
βξ(y) is a continuous function of ξ, from A to scalars (since it is a composition of continuous
functions). Therefore, {ξ : ξ(αx+ βy)− αξ(x)− βξ(y) = 0} is closed in A (being an inverse
image of zero). Therefore,

BX∗ = ∩x,y,α,β{ξ : ξ(αx+ βy)− αξ(x)− βξ(y) = 0}
is closed in the compact set A. �

Remark 10.13. If X is separable then (BX∗ , σ(X∗, X)) is metrizable. Using the homeomor-
phism ι : (X, σ(X,X∗))→ (X∗∗, σ(X∗∗, X∗)), we see: if X∗ is separable then (BX , σ(X,X∗))
is metrizable. To prove the first assertion, let {xn}n≥1 be dense in BX . Then, define
ρ(x∗1, x

∗
2) =

∑
n≥1 2−n |x∗1(xn)− x∗2(xn)|. Essentially by definition (using open balls), ρ is
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σ(X∗, X) continuous. That is, a point x in an open ρ ball U has x ∈ V ⊆ U , V a basic
open set in the weak∗ topology. And the reverse inclusion of open sets holds by scaling
appropriately. So, for X separable, BX∗ is sequentially compact.

Theorem 10.14. (Properties of Faces)

(a) ∩{faces} = face
(b) A face of a face is a face.
(c) For A : H → H̃ continuous and linear, if K is compact and convex, then A(K) is

too.
(d) If F̃ is a face of K̃ := A(K), then F := K ∩ A−1(F̃ ) is a face of K.

(e) If F̃ $ K̃ := A(K), then F := K ∩ A−1(F̃ ) 6= K.
(f) Let X be a topological vector space such that X∗ separates points of X (e.g. X is

normed linear, using Thm. 10.5, or X is locally convex, using Thm. 10.11). Then a
nonempty extreme face is an extreme point.

Proof of (f): (Properties (a),(b),(c) and (e) are routine. For (d), apply A to a segment
containing a point of F .). View X as a vector space over R. Let ξ ∈ X∗ be real valued.
Let F ⊆ K be an extreme face. By definition of a face, F is compact, convex. Since ξ(F )
is compact, convex from (c), ξ(F ) = [a, b]. Now, {a} is a face of ξ(F ), so F ∩ ξ−1(a) is a
nonempty face of F . Since F is extreme, F = F ∩ ξ−1(a), i.e. ξ(F ) = {a}. If F had two
distinct points, we could choose ξ which separates them, by assumption on X∗. Therefore,
F has only one point. �

Theorem 10.15. (Krein-Milman) Let X be a locally convex topological vector space. If

K is compact and convex, then K̂ = K.

Proof. We will use Thm. 10.14 multiple times, without further note. Recall that K̂ is
the intersection of all compact, convex sets containing the extreme points of K. So, by

definition, K̂ ⊆ K. We will see below that K̂ 6= ∅. For ξ a real continuous linear functional,

ξ(K̂) ⊆ ξ(K) = [a, b]. Now, K ∩ ξ−1(a) is a face of K. Let T be the set of non-empty
faces of K ∩ ξ−1(a). For t1, t2 ∈ T , write t1 ≤ t2 if t2 ⊆ t1 (i.e. we reverse the inclusion).
Every chain has a nonempty upper bound, since the intersection of nested compact sets is
nonempty. (Recall: we take the definition of compactness, take the contrapositive, and then
take complements and apply de Morgan’s law. Finally, use the finite intersection property.)
By Zorn’s Lemma, ∃ a nonempty extreme face in K ∩ ξ−1(a), which is therefore an extreme

point. Thus, (K ∩ ξ−1(a)) ∩ K̂ 6= ∅, so a ∈ ξ(K̂), so the endpoints of ξ(K) are in ξ(K̂), so

(by convexity of K̂), ξ(K) ⊆ ξ(K̂). Thus, ξ(K) = ξ(K̂) for all real linear functionals ξ, so

K̂ = K from Hahn-Banach in Geometric Form (Thm. 10.4(d)). (If K̂ $ K, let x ∈ K r K̂,

so Hahn-Banach gives ξ with ξ(K̂) < α, ξ(x) > α.) �

Remark 10.16. Given X, Y , we consider whether or not Y = X∗. If so, then BY = BX∗

is compact and convex, so this theorem says B̂Y = BY . Thus, analyzing the extreme points
of BY (existence, nonexistence, finiteness, etc.) can tell us whether not not Y = X∗ for
any X. For example, the unit ball of C([0, 1],R) only has extreme points ±1, and that of
L1([0, 1],R) has no extreme points.

Theorem 10.17. (Weak Topology Equivalence)
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(a) The σ(X,X∗) topology on X is the weakest topology such that all norm-continuous
linear functionals are still continuous. Similarly, the σ(X∗, X) topology on X∗ is the
weakest topology which makes all functionals in ι(X) ⊆ X∗∗ continuous.

(b) The space of all continuous linear functionals on (X, σ(X,X∗)) equals X∗.
(c) Let φ0, . . . , φn be linear forms on a linear space X (i.e. ignore any topology). Then

the following are equivalent: (i) φ0 ∈ span{φj}nj=1, and (ii) kerφ0 ⊇ ∩nj=1 kerφj
(d) The space of all continuous linear functionals on (X∗, σ(X∗, X)) equals X.

Proof of (a): Apply definitions.
(b): The forward direction follows since the weak topology is weaker than the strong

topology. The reverse is part (a).
(c): (i) easily implies (ii). For the reverse, define π : X → Kn by π(x) = {φj(x)}nj=1

(K = scalars). Then kerπ = ∩nj=1 kerφj, so (ii) implies that φ0 induces a linear form
Λ: Kn → K, i.e. φ0 = Λπ. (For z = {φj(x)}nj=1, z is in the linear space π(X), so define
Λ(z) = φ0(x). By (ii), Λ is well-defined. Λ is linear on π(X), so extend Λ linearly to Kn.)
From linear algebra, φ0(x) =

∑n
j=1 αjφj(x).

(d): Let φ be a linear functional onX∗ continuous in σ(X∗, X). Then {x∗ ∈ X∗ : |φ(x∗)| <
1} ⊇ {x∗ ∈ X∗ : |xj(x∗)| < ε, j = 1, . . . , n} for some ε > 0, x1, . . . , xj ∈ X∗. In particular,

viewing xj ∈ X∗∗, kerφ ⊇ ∩ji=1 ker(xj). Finally, apply part (c). �

Theorem 10.18. (Goldstine) The closed unit ball of X is σ(X∗∗, X∗)-dense in the closed
unit ball of X∗∗. (Here we identify BX with ι(BX) ⊆ X∗∗)

Proof. Trick: use X∗∗∗, Hahn-Banach, contradiction. Let V = BX
σ(X∗∗,X∗)

. Assume for the
sake of contradiction ∃ x∗∗ ∈ X∗∗ with ‖x∗∗‖ ≤ 1, x∗∗ /∈ V . Alaoglu (Thm. 10.12) says V
is σ(X∗∗, X∗)-compact. So, Hahn-Banach, geometric form (Thm. 10.4(d)) gives φ a linear
functional on (X∗∗, σ(X∗∗, X∗)) with φ(x∗∗) > sup{φ(v) : v ∈ V }. Theorem 10.17(d) says
φ(x∗∗) = x∗∗(x∗0), for some x∗0 ∈ X∗. But then

‖x∗0‖ = sup
x∈X
‖x‖≤1

|x∗0(x)| ≤ sup
v∈V
|v(x∗0)| = sup

v∈V
|φ(v)| < φ(x∗∗) = x∗∗(x∗0) ≤ ‖x∗0‖

which is a contradiction. �

Theorem 10.19. (Reflexive equivalences) Let X be a Banach space. The following are
equivalent:

(a) X is reflexive (ι(X) = X∗∗)
(b) X∗ is reflexive
(c) BX is σ(X,X∗) compact
(d) Every subspace of X is reflexive
(e) Every quotient space of X is reflexive

Proof: (a) implies (c): Using ι, we know that (BX , σ(X,X∗)) is homeomorphic to
(BX∗∗ , σ(X∗∗, X∗)) so apply Alaoglu (Thm. 10.12).

(c) implies (a): ι(BX) is compact, so apply Goldstine (Thm. 10.18).
(d) implies (a): True by definition.
(a) implies (d): Let Y ⊆ X be a norm-closed subspace. By, say, Hahn-Banach (Thm.

10.5), Y is σ(X,X∗) closed. By (c), BY ⊆ BX is σ(X,X∗) compact. By restriction of X∗,
BY is σ(Y, Y ∗) compact, so Y is reflexive, since (c) implies (a).
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(a) implies (b): By reflexivity, (X∗, σ(X∗, X)) = (X∗, σ(X∗, X∗∗)), so Alaoglu (Thm.
10.12) shows BX∗ is σ(X∗, X∗∗) compact, so use: (c) implies (a).

(b) implies (a): X∗ reflexive implies X∗∗ is reflexive (since (a) implies (b)) so X is
reflexive, using ι(X) ⊆ X∗∗ and that (a) implies (d).

(e)⇐⇒(a): (X/Y )∗ ⊆ X∗ from Hahn-Banach, so use: (a)⇐⇒(b)⇐⇒(d). �

Remark 10.20. Let (S, µ) be a σ-finite measure space with infinitely many disjoint sets of
positive measure. Then L1, L∞ are not reflexive. Since (L1)∗ = L∞, the previous theorem
says, it suffices to show that L1 is not reflexive. So it suffices to find φ ∈ (L∞)∗ with φ /∈ ι(L1).
Let {En}∞n=1 be disjoint sets of positive measure. Let Y ⊆ L∞ be the set of functions that are
constant on each En, with y ∈ Y satisfying: limn→∞ y(En) exists. Let y∗(y) = limn→∞ y(En).
Then y∗ has norm 1, and Hahn-Banach (Thm. 10.3) gives an extension x∗ ∈ (L∞)∗. For
the sake of contradiction, assume ∃ g ∈ L1 such that x∗(f) =

∫
S
fgdµ. In particular,

x∗(f) =
∫
S
fgdµ for all f ∈ Y . Then x∗(1En) = y∗(1En) = 0, but

1 = y∗(1∪∞n=1En
) = x∗(1∪∞n=1En

) =

∫
S

g(1∪∞n=1En
) =

∞∑
n=1

∫
En

g =
∞∑
n=1

x∗(1En) = 0

a contradiction. So, no such g exists, i.e. x∗ /∈ ι(L1).

Theorem 10.21. (Principle of Local Reflexivity) Let X be a Banach space and let
E ⊆ X∗∗ and F ⊆ X∗ be finite dimensional subspaces. Given ε > 0 there exists an operator
T : E → X such that

(1) ‖T‖ ‖T−1|T (E)‖ ≤ 1 + ε
(2) T |E∩X = id
(3) f(Te) = e(f) for all f ∈ F and e ∈ E

Proof. We begin with the following Lemma:
Let {Aj}Nj=1 be bounded, norm-open convex subsets of X and let Ãj be the norm interior

of the σ(X∗∗, X∗)-closure of Aj in X∗∗.

(a) If ∩Nj=1Ãj 6= ∅ then ∩Nj=1Aj 6= ∅
(b) If we have a map T : X → Y with Y a finite dimensional Banach space then

T ∗∗(∩Nj=1Ãj) = T (∩Nj=1Aj).

Proof of Lemma, (a): We prove the contrapositive statement. Let XN = ⊕Ni=1(X) and let
A = {{xj}Nj=1 ∈ XN : xj ∈ Aj, j = 1, . . . , N}. Then A ⊆ XN is bounded, norm-open and

convex. If ∩Nj=1Aj = ∅ then A ∩ V = ∅ for V = {{xj}Nj=1 ∈ XN : xj = x1 for j = 1, . . . , N}.
Let Ã = {{x∗∗j }Nj=1 ∈ X∗∗N : x∗∗j ∈ Ãj, j = 1, . . . , N} and let V ∗∗ = {{x∗∗j }Nj=1 ∈ X∗∗N : x∗∗j =
x∗∗1 for j = 1, . . . , N}.

If A ∩ V = ∅ then since V is a closed subspace, Hahn-Banach, Thm. 10.4(a) says there
exists φ = (φ1, . . . , φN) ∈ X∗N with φ|V = 0 and φ(a) > 0 for all a ∈ A. By Goldstine, Thm.

10.18, A is σ(X∗∗, X∗) dense in Ã, so φ(a∗∗) ≥ 0 for all a∗∗ ∈ Ã. But Ã is open so φ(Ã) is
open, so φ(a∗∗) > 0 for all a∗∗ ∈ Ã. But BV is σ(X∗∗, X∗) dense in BV ∗∗ , so φ(V ∗∗) = 0, so
Ã ∩ V ∗∗ = ∅, i.e. ∩Nj=1Ãj = ∅.
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Proof of Lemma, (b): Note that T ∗∗(∩Nj=1Ãj) and T (∩Nj=1Aj) are open, convex sets and

since ι(Aj) ⊆ Ãj, we have T (∩Nj=1Aj) ⊆ T ∗∗(∩Nj=1Ãj). Suppose this containment is strict. Us-

ing Hahn-Banach, Thm. 10.4(d), there exists p ∈ T ∗∗(∩Nj=1Ãj) and there exists a functional

φ on Y ∗∗ and α > β such that φ(p) > α > β > φ(T (∩Nj=1Aj)).

Let z∗∗∗ ∈ X∗∗∗ with z∗∗∗ = T ∗∗∗(φ). Let A+
j = Aj ∩ {x ∈ X : z∗∗∗(x) > α}, Ã+

j =

Ãj ∩{x∗∗ ∈ X∗∗ : z∗∗∗(x∗∗) > α}. By definition of φ, z∗∗∗, T ∗, we have ∩Nj=1A
+
j = ∅. However,

∩Nj=1Ã
+
j 6= ∅, contradicting (a) and proving (b). To verify the nonempty intersection, write

p = T ∗∗(z), so that z∗∗∗(z) = T ∗∗∗(φ)(z) = φ(T ∗∗(z)) = φ(p) > α, i.e. z ∈ ∩Nj=1Ã
+
j .

Proof of Theorem: Let dim(E) = n and dim(E ∩ X) = n − k. Let {x∗∗j , e∗j}nj=1 be a

biorthogonal system in E × E∗ such that span{x∗∗j }nj=k+1 = E ∩ X and
∥∥x∗∗j ∥∥ = 1. From

biorthogonality, the identity id : E → X∗∗ can be written as id(e) =
∑n

j=1 e
∗
j(e)x

∗∗
j . We will

find x1, . . . , xk ∈ X such that T : E → X defined by T (e) =
∑k

j=1 e
∗
j(e)xj +

∑n
j=k+1 e

∗
j(e)x

∗∗
j

satisfies the conclusion of the theorem. Note that property (2) is already satisfied by this
T . Let Z = ⊕ki=1(X) and let δ > 0. Fix the following three sets: {fj}Mj=1 a basis of F ,

{x∗j}Rj=1 ⊆ BX∗ a set such that for every e ∈ E, ‖e‖ ≤ (1 + δ) sup{|x∗j(e)| : j = 1, . . . , R}, and

{ej}Nj=1 a δ-net in BE.

Write ej =
∑n

r=1 λ
j
rx
∗∗
r . For j = 1, . . . , N , define Cj ⊆ Z by

Cj := {{xs}ks=1 :

∥∥∥∥∥
k∑
s=1

λjsxs +
n∑

s=k+1

λjsx
∗∗
s

∥∥∥∥∥ < (1 + δ) ‖ej‖

and ‖xs‖ < 1 + δ, s = 1, . . . , k}

Note that the Cj are norm-open, bounded and convex. Let C̃j denote the norm interior of

the σ(X∗∗, X∗)-closure of Cj in X∗∗. Since {x∗∗s }ks=1 ∈ ∩Nj=1C̃j ⊆ Z∗∗, part (a) of the Lemma

gives {zs}ks=1 ∈ ∩Nj=1Cj 6= ∅.
Let K = {scalars} and define S : Z → KM ·k ⊕KR·k by

S({xs}ks=1) := {fj(xs), x∗k(xs)}j=1,...,M,k=1,...,R,s=1,...,k

From part (b) of the Lemma, there exists {zs}ks=1 ∈ ∩Nj=1Cj with S({zs}ks=1) = S∗∗({z∗∗s }ks=1).
By the last equality, from our formula for id, by choice of {fj} and by definition of T ,
property (3) follows. It remains to show that property (1) holds. Using again the equality
S({zs}ks=1) = S∗∗({z∗∗s }ks=1), we see that x∗j(Te) = x∗j(e). So, by the defining properties of
{x∗j},

‖Te‖ ≥ sup
j=1,...,R

∣∣x∗j(Te)∣∣ = sup
j=1,...,R

∣∣x∗j(e)∣∣ ≥ (1 + δ)−1 ‖e‖ (∗)

Given e ∈ BE, fix ej with ‖e− ej‖ ≤ δ. Recall the formula ej =
∑n

r=1 λ
j
rx
∗∗
r . Since λjr =

e∗r(ej) and since {zs}ks=1 ⊆ Cj, the definitions of T and Cj show that ‖Tej‖ ≤ (1 + δ) ‖ej‖.
Therefore ‖Te‖ ≤ ‖Tej‖+ ‖T (e− ej)‖ ≤ (1 + δ) ‖ej‖+ δ ‖T‖ ≤ (‖e‖+ δ)(1 + δ) + δ ‖T‖ , so

‖Te‖ ≤ ‖e‖+ 2δ + δ2 + δ ‖T‖ (∗∗)

We crudely estimate ‖T‖ by ‖T‖ ≤ (1 + δ)
∑n

j=1

∥∥e∗j∥∥ ≤ 2
∑n

j=1

∥∥e∗j∥∥ for δ < 1. So, for δ

sufficiently small, (∗) and (∗∗) give condition (1), proving the theorem. �
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Theorem 10.22. (Spectral Mapping theorem) Let a ∈ A, A a complex Banach algebra
with identity. Recall: σ(a) = {λ ∈ C : x − λ · 1 is not invertible}, and σ(a) is compact and
nonempty. If p is a polynomial, then p(σ(a)) = σ(p(a)).

Proof. See Thm. 10.26(4). �

Theorem 10.23. (Facts about ideals, etc.) An ideal I ⊆ B is closed under addition
(within I) and multiplication by elements of B. An ideal is called maximal if I 6= B and I
is not contained in any larger proper ideal. Define the singular elements S as the union
of all maximal ideals in B.

(1) If {0} is the only proper ideal in B, then B is a field.
(2) If I is a maximal ideal in B, then B/I is a field.
(3) For a ∈ B, a is invertible if and only if a does not belong to any maximal ideal.

(4) If α ∈ B̃, then α(1) = 1. (Use α(1) = α(1)α(1).)
(5) If I is a proper ideal in B, then I is a proper ideal. (Let an → a, an, b ∈ I, a ∈ I.

Then ba = lim ban ∈ I. Also, I ⊆ S, 1 /∈ S.)
(6) If I is a maximal ideal then I = I. (Follows from (5)).
(7) Let B be a Banach space, and let K be a closed subspace of B. Then B/K with
‖x+K‖ := inf{‖y‖ : y ∈ x + K} is a Banach space. Moreover, if B is a Banach
algebra with identity and K is a closed proper two sided ideal in B, then B/K is a
Banach algebra, with the norm as before.

(8) For ξ a linear function on a Banach space B, ξ is continuous if and only if ker ξ is
closed.

(9) Any character α (i.e. α ∈ B̃) is continuous.
(10) (Gelfand-Mazur) The only complex Banach algebra with unit which is a division al-

gebra is C.
(11) There is a one to one correspondence between characters and maximal ideals given

by α 7→ kerα

Proof of (7): The triangle inequality is mostly routine. Without loss of generality,
suppose {xn + K}n≥1 is Cauchy with ‖xn − xm +K‖ < 2−min(n,m). By definition of the
norm, we may take {kn}n≥1 ⊆ K with ‖xn − xn+1 − kn+1‖ < 2−n+1. Let zn = xn +

∑n
j=1 kn.

Then {zn}n≥1 is Cauchy, so zn → x for some x ∈ B. We claim that xn + K → x + K in
B/K. This follows since

‖xn − x+K‖ ≤ ‖xn − zn +K‖+ ‖zn − x+K‖ = ‖zn − x+K‖ ≤ ‖zn − x‖

The second assertion is mostly routine.
Proof of (8): If ξ is continuous, ξ−1(0) = ker ξ is closed. Conversely, if K := ker ξ is

closed, then from (7), B/K is a Banach space. Define ζ : B/K → {scalars} by ζ(x + K) =
ξ(x) (this is well defined and linear with trivial kernel). For y, z ∈ B/K, y, z 6= 0 we

therefore have ζ(ζ(z)y − zζ(y)) = 0, so z = ζ(z)
ζ(y)

y, i.e. B/K is one-dimensional. So, ζ is

clearly continuous. Also, Π: B → B/K defined by Π(x) = x + K is also easily continuous,
so ξ = ζ ◦ Π is continuous.

Proof of (9): For α a character, I := {a ∈ B : α(a) = 0} = kerα is an ideal that is
proper, since α(1) = 1. For any a ∈ B, write a = (a − α(a)1) + α(a)1. This shows that
dimC(B/I) = 1, so I is maximal, hence closed (by (6)), so α is continuous by (8).
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Proof of (10): Let a ∈ A, λ ∈ σ(a). Then a − λ1 is not invertible, so a − λ1 = 0, so
a = λ1, i.e. A is scalar multiples of 1.

Proof of (11): From the proof of (9), we see that kerα is a maximal ideal. Now, let I
be a maximal ideal. I is closed from (6), so B/I is a field from (2) and a complex Banach
algebra from (7). From (10), this means B/I is isomorphic to C. Let β : B → B/I ≈ C be
the natural (projection) homomorphism. By definition, β is a character, and I = ker β, so
any maximal ideal is the kernel of some character. This shows surjectivity. For injectivity,
if kerα = ker β = I, then 1 /∈ I, and from the proof of (9), we may write any a ∈ B as
a = c+ λ1, c ∈ I, λ ∈ C. Then α(a) = λ = β(a). �

Theorem 10.24. (Characterization of Characters) Let B be a commutative Banach

algebra with identity. Then the set of characters B̃ is a closed subset of the unit ball of B∗
in the weak∗ topology. In particular, B̃ is a compact Hausdorff space in this topology.

Proof. Let α ∈ B̃. We first show that ‖α‖ ≤ 1. Let a ∈ B, ‖a‖ ≤ 1. Then ‖an‖ ≤ 1,
so {an} is a bounded set. Since |α(an)| = |α(a)|n we must have |α(a)| ≤ 1, via Thm.

10.23(9). Therefore, B̃ is contained in the unit ball of B∗. Now, using the same reasoning
as in Alaoglu’s Theorem (Thm. 10.12), {ξ ∈ B∗ : ξ(ab) = ξ(a)ξ(b)} (for a, b ∈ B fixed) is
closed in the weak∗ topology. Therefore, ∩a,b∈B{ξ ∈ B∗ : ξ(ab) = ξ(a)ξ(b)} is weak∗ closed.

Simiarly, {ξ ∈ B∗ : ξ(1) = 1} is weak∗ closed, so B̃ is weak∗ closed (recall that we defined
characters to be nonzero). �

Theorem 10.25. (Gelfand) The canonical map is a homomorphism from B into C(B̃)
with norm at most one. (Recall the definition: a 7→ â, where â(α) := α(a).)

Proof. âb(α) = α(ab) = α(a)α(b) = â(α)̂b(β). So, the Gelfand map is a homomorphism. For

all α ∈ B̃ we have |â(α)| = |α(a)| ≤ ‖a‖ from Thm. 10.24, so ‖â‖∞ ≤ ‖a‖. �

Theorem 10.26. (Facts about the Gelfand map, etc.)

(1) The kernel of the canonical map is the radical of B (i.e. the intersection of maxi-
mal ideals). So, the canonical map is injective if and only if the radical is trivial.
(Surjectivity will be dealt with below.)

(2) 1̂(α) = α(1) = 1 for all α ∈ B̃ (Use Thm. 10.23(4))
(3) λ ∈ σ(a) if and only if λ ∈ range of â, i.e. σ(a) = R(â)
(4) The Spectral mapping theorem (Thm. 10.22) follows from (3).
(5) r(a) = ‖â‖∞ ≤ ‖a‖, from (3) and Thm. 10.25. Therefore, r(a+ b) ≤ r(a) + r(b) and

r(ab) ≤ r(a)r(b).
(6) The following are equivalent: a ∈ radical, â = 0, ‖â‖∞ = 0, and r(a) = 0. (Apply

(1) and (5)).

(7) r(an) = r(a)n, and r(a) = limn→∞ ‖an‖1/n

(8) ‖â‖∞ = ‖a‖ for all a ∈ B if and only if ‖a2‖ = ‖a‖2 for all a ∈ B.
(9) Let B be a symmetric Banach algebra (1 + a∗a is invertible). If a is Hermitian, then

a is real. If a is strongly positive, then a is positive.
(10) Let B be a commutative ∗ algebra with unit. Then the following are equivalent: (i)

B is symmetric, (ii) Hermitian implies real, (iii) (̂a∗)(α) = â(α), and (iv) Every
maximal ideal is closed under ∗.
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Proof of (1): If â = 0 then α(a) = 0 for all α. So a ∈ kerα ∀α, so a is in every maximal
ideal by Thm. 10.23(11). We can reverse this argument to see that the radical is in the
kernel of the canonical map.

Proof of (3): a is invertible, if and only if a is not in a maximal ideal, if and only if
â(α) 6= 0 for each α (from (1)). So, by negation, λ ∈ σ(a), if and only if a − λ1 is in
some maximal ideal, if and only if there exists some α with α(a − λ1) = 0, if and only if

â(α)− λ1̂(α) = 0, if and only if â(α) = λ, from (2).
Proof of (4): Using (3) and Thm. 10.25,

σ(p((a))) = R(p̂(a)) = R(p(â)) = p(σ(a))

Proof of (7): From the remarks at the beginning of this Section, σ(a) is compact, so ∃
λ ∈ σ(a) with |λ| = r(a). So, λn ∈ σ(an) by (4) (Thm. 10.22), so r(an) ≥ |λn| = r(a)n.
Conversely, ∃ λ0 ∈ σ(an) with r(an) = |λ0|. By (4), ∃ λ ∈ σ(a) with λn = λ0, so r(a)n ≥
|λ|n = |λ0| = r(an).

To prove the second assertion, we use power series. Let ξ be a linear functional. For λ small
enough, (1 − λa)−1 =

∑
n≥0 a

nλn, and ξ((1 − λa)−1) =
∑

n≥0 ξ(a
n)λn. From the discussion

near the beginning of this Section, ξ((1− aλ)−1) is analytic for (1/λ) /∈ σ(a), so the infinite
sum converges for |λ| < 1/r(a). For fixed ξ and λ as above, {|λn| |ξ(an)| : n = 0, 1, 2, . . .} is
therefore a bounded set. So, the Uniform boundedness principle (Thm. 10.6) says {λnan}
is a bounded set, i.e. ‖λnan‖ ≤ K, K > 0. So, lim sup ‖an‖1/n ≤ 1/ |λ| for r(a) < 1/ |λ|, so

lim sup ‖an‖1/n ≤ r(a). But r(a)n = r(an) ≤ ‖an‖ from (5), so r(a) ≤ lim inf ‖an‖1/n.
Proof of (8): From (5), ‖â‖∞ = ‖a‖ if and only if r(a) = ‖a‖. Now, if ‖a2‖ = ‖a‖2 for

all a, then ‖a‖ =
∥∥a2n

∥∥1/2n
, so ‖a‖ = limn

∥∥a2n
∥∥1/2n

= r(a) from (7). If r(a) = ‖a‖ for all a,

then ‖a2‖ = r(a2) = r(a)2 = ‖a‖2, from (7).
Proof of (9): Let a = a∗. By scaling, it suffices to show a − i is invertible. But

(a− i)(a + i)(1 + a∗a)−1 = 1 and (1 + a∗a)(a + i)(a− i) = 1, so a− i is invertible. For the
second assertion, let a = b∗b. Then a = a∗, so by the first assertion, a is real. Finally, for

α < 0 we write b∗b− α = −α
((

b√
−α

)∗ (
b√
−α

)
+ 1
)

, which is invertible, so σ(a) ⊆ [0,∞).

Proof of (10): (i) implies (ii) follows from (9). To show (ii) implies (iii), let f = a+ a∗,
g = i(a − a∗). Then f, g are Hermitian, so σ(f), σ(g) ⊆ R. Using the Gelfand map and

(3), α(f), α(g) ∈ R for a character α, i.e. α(f) = α(f), α(g) = α(g). So α(a) + α(a∗) =

α(a) + α(a∗) and i(α(a) − α(a∗)) = −i(α(a) − α(a∗)), i.e. −α(a) + α(a∗) = α(a) − α(a∗).

Adding the first and third equality, α(a) = α(a∗).
To show (iii) implies (iv), let I be a maximal ideal. By Thm. 10.23(11), I = kerα for

some character α. For a ∈ I, 0 = α(a) = α(a) = α(a∗), so a∗ ∈ I. To show (iv) implies
(i), first observe that (iv) implies (iii). For α a character, let b = c − α(c)1, so α(b) = 0.

Then b, b∗ ∈ kerα, i.e. α(b∗) = α(c∗)− α((α(c)1)∗) = α(c∗)− α(c) = 0, proving (iii). Now,
α(c∗c) = α(c∗)α(c) = |α(c)|2, so α(1+c∗c) = 1+ |α(c)|2 6= 0, so 1+c∗c is not in any maximal
ideal by Thm. 10.23(11), i.e. it is invertible. �

Theorem 10.27. (Gelfand Map for a B∗ algebra) If B is a commutative B∗ alge-
bra with identity, then the canonical map (Gelfand map) is an isometric isomorphism onto

C(B̃). So, using Thm. 10.24, B is isometrically isomorphic to the algebra of complex valued
functions on a compact Hausdorff space.
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Proof. Claim 1: If B is a commutative ∗-multiplicative Banach algebra with identity, then
‖a‖ = r(a) for all a ∈ B. (From the remarks at the beginning of this Section, a B∗ algebra
is ∗-multiplicative. By Thm. 10.26(3), r(a) = ‖a‖ if and only if ‖â‖ = ‖a‖, so the Gelfand
map is an isometry with complete image.)

Claim 2: A commutative B∗ algebra with identity is symmetric and semisimple. (In
particular, via Thm. 10.26(1), the Gelfand map is injective).

Claim 3: If B is commutative, and symmetric (with unit), the image of B under the

canonical map is dense in C(B̃). (Combining this with the first claim gives surjectivity,
proving the theorem).

Proof of Claim 1: Let b be Hermitian. Then ‖b2‖ = ‖b∗b‖ = ‖b∗‖ ‖b‖ = ‖b‖2,
∥∥b2n

∥∥ =

‖b‖2n , so r(b) = ‖b‖ from Thm. 10.26(7). For a arbitrary, a∗a is Hermitian, so ‖a∗‖ ‖a‖ =
‖a∗a‖ = r(a∗a) ≤ r(a∗)r(a) ≤ ‖a∗‖ r(a), using Thm. 10.26(5) twice. So, ‖a‖ ≤ r(a), and
Thm. 10.26(5) says r(a) ≤ ‖a‖, so ‖a‖ = r(a).

Proof of Claim 2: Semisimplicity (radical = 0) follows from Thm. 10.26(6) and Claim 1.
Now, using Thm. 10.26(10), it suffices to show: if a = a∗, then a is real. By scaling, if suffices
to show a− i is invertible, i.e. 1 + ia is invertible, i.e. 1 /∈ σ(−ia), i.e. λ+ 1 /∈ σ(λ− ia) (for
some λ ∈ R). If λ + 1 ∈ σ(λ− ia) for all λ ∈ R, then since supγ∈σ(b) |γ| =: r(b) ≤ ‖b‖ from
Thm. 10.26(5), we have

(λ+ 1)2 ≤ ‖λ− ia‖2 = ‖(λ+ ia)(λ− ia)‖ =
∥∥λ2 + a2

∥∥ ≤ λ2 +
∥∥a2
∥∥

using ∗-multiplicativity and the triangle inequality. But then 2λ + 1 ≤ ‖a2‖, which is a
contradiction for λ large. Therefore, λ+ 1 /∈ σ(λ− ia) for some λ ∈ R.

Proof of Claim 3: Let α1 6= α2 ∈ B̃, β1, β2 ∈ C. Let a ∈ B such that α1(a) 6= α2(a).
Choose (using basic linear algebra) λ, µ such that λα1(a) + µ = β1, λα2(a) + µ = β2. Let

b := λa + µ. Then b̂(α1) = β1, b̂(α2) = β2. The claim then follows by Stone-Weierstrass

Theorem. Note that B̃ is a compact Hausdorff space from Thm. 10.24, the image of the
Gelfand map clearly contains constants, and Thm. 10.26(10)(iii) shows that this image is
closed under conjugation. �

Theorem 10.28. (Facts about maximal abelian self adjoint (m.a.s.a.) algebras,
etc.) (Recall A′ is a set of commutators, and M denotes the multiplication algebra on L2.)

(1) A ⊆ B(H) is maximal abelian if and only if A = A′. If A ⊆ B(H) is m.a.s.a. then
A = A′.

(2) A m.a.s.a algebra A is a C∗ algebra (and a B∗ algebra).
(3) Let (X,µ) be a σ-finite measure space. Then M(X,µ) is a m.a.s.a. algebra.
(4) Let A be any ∗ subalgebra of B(H). Suppose K is a closed subspace of H and P is

the projection on K. Then K is invariant under A if and only if P ∈ A′
(5) If H is separable and A is m.a.s.a. on H then A has a cyclic vector. (∃ z with Az

dense in H.)

Proof of (1): Let A be maximal abelian and let B ∈ A′. We first note that id, 0 ∈ A,
since the set of operators of the form A or A+ id, with A ∈ A or A = 0, contains A and is
abelian. Also, the set of operators of the form A0 +A1B + · · ·+AnB

n is an abelian algebra
containing A, so B ∈ A, i.e. A′ ⊆ A, so A = A′. Conversely, if C ⊇ A is an abelian algebra,
then C ⊆ A′ = A, so C = A, i.e. A is maximal abelian.
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Let A be m.a.s.a., and let B ∈ A′. We first note that id, 0 ∈ A, since the set of operators of
the form A or A+ id, with A ∈ A or A = 0, contains A and is abelian and self adjoint. Now,
for A ∈ A, A∗ ∈ A, so AB = BA,A∗B = BA∗, so B∗A∗ = A∗B∗, B∗A = AB∗, so B∗ ∈ A′.
Write A = (A + A∗)/2 + i(−i(A − A∗)/2) =: X + iY . Then X, Y ∈ A′, X∗ = X, Y ∗ = Y .
The set of operators of the form A0 + A1X + · · · + AnX

n, Aj ∈ A is a commutative self
adjoint algebra containing A, so it is A. This set of operators also contains X, since 1 ∈ A.
Therefore, X ∈ A. Similarly, Y ∈ A, so B ∈ A, i.e. A′ ⊆ A. By commutativity of A,
A ⊆ A′. Therefore A = A′.

Proof of (2): Let An ∈ A, An → A. For any B ∈ A we have AB − BA = lim(AnB −
BAn) = 0, so A ∈ A′ = A, from (1). Also, by definition of m.a.s.a., A ∈ A implies A∗ ∈ A.
Finally, ‖A∗A‖ = ‖A‖2, from the remarks at the beginning of this Section.

Proof of (3): Assume µ(X) < ∞. Let T ∈ (M(X,µ))′. Let g = T (1). If f ∈ L∞
then TMf1 = MfT1, so T (f) = fg, i.e. Tf = Mgf for f ∈ L∞. By approximating
appropriate level sets with indicator functions (as in the proof that ‖Mf‖ = ‖f‖∞), we see
that ‖g‖∞ ≤ ‖T‖. Since Mg and T are both bounded on L2, the equation T |L∞ = Mg|L∞
extends by continuity to L2. Thus, T ∈M(X,µ) andM(X,µ) is maximal abelian from (1).
Since M∗

g = Mg,M(X,µ) is self-adjoint. The general σ-finite case follows the usual “piecing
together” argument. Write X = ∪∞j=1Xj, µ(Xj) < ∞, Xj disjoint. If T ∈ (M(X,µ))′, T
commutes with M1Xj

, so T leaves the subspace {f ∈ L2(X) : f |Xc
j

= 0} (= L2(Xj)) invariant,
etc.

Proof of (4): If P ∈ A′, x ∈ K then Ax = APx = PAx ∈ K. Conversely, if AK ⊆ K
with x ∈ H, then APx ∈ K, so APx = PAPx. Since A∗ ∈ A, we similarly have A∗P =
PA∗P . So, PA = P ∗A = (A∗P )∗ = (PA∗P )∗ = PAP = AP , so P ∈ A′. (A projection
satisfies P = P ∗ by Thm. 10.1(b)).

Proof of (5): Let x ∈ H, and let Ax be the smallest closed subspace containing Ax.
Note that id ∈ A so x ∈ Ax. Since Ax is invariant under A, so is Ax (via a limiting
argument). Suppose y ⊥ Ax. Since (Ay,Bx) = (y, A∗Bx) = 0, Ay ⊥ Ax. Let E = {xα}
be an orthonormal set such that Axα ⊥ Axβ for α 6= β. These sets exists (consider e.g.
singletons), so Zorn’s lemma gives a maximal such set, E. Note that H = closed spanα{Axα}
(for if not, this would contradict maximality of E). Since H is separable, E = {xα}α∈N is
countable. Set z =

∑
n≥1 2−nxn. This is our desired cyclic vector. To see this, let Pn project

onto Axn. From (4), Pn ∈ A′, so Pn ∈ A = A′ by (1), so Az ⊇ APnz = A2−nxn = Axn, so
Az ⊇ closed spann{Axn} = H. �

Theorem 10.29. (Unitary Diagonalization of m.a.s.a algebra) Let A be a m.a.s.a.
algebra on a separable Hilbert space H. Then ∃ a finite measure space (X,µ) and a unitary
operator U : H � L2(X,µ) such that UAU−1 =M(X,µ)

Proof. Idea: Take “Rayleigh quotient” of (unit) cyclic vector (separating vector), use inverse

Gelfand map. Using the Gelfand map again, define U0Az = Â.
Let z be a unit cyclic vector for A (using Thm. 10.28(5)). Then z is also a separating

vector for A (i.e. if A ∈ A and Az = 0 then A = 0) since if Az = 0 then ∀ B ∈ A,
ABz = BAz = 0, so AAz = 0, but Az is dense, so A = 0. From Thm. 10.28(2), A is a B∗

algebra (with identity). Let X = spectrum(A) = Ã. From Thm. 10.27, the Gelfand map

A 7→ Â is an isometric isomorphism A� C(X).
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Define Λ: C(X)→ C by

Λ(Â) := (Az, z)

Λ is a bounded linear functional, as it is the composition of bounded linear functionals. In

fact, |Λ(Â)| ≤ ‖A‖ = ‖Â‖∞ (using that the Gelfand map is an isometry). Λ is positive since

Λ(ÂÂ) = Λ(Â∗Â) = Λ(Â∗A) = (A∗Az, z) = ‖Az‖2 ≥ 0

(using Claim 2 of Thm. 10.27, Thm.10.26(10)(iii), and Thm. 10.25). So, by Riesz’s Repre-
sentation Theorem and recalling that X is compact, ∃ a unique regular Borel measure µ on X

such that Λ(Â) =
∫
Âdµ. Using Thm. 10.26(2), note that µ(X) =

∫
1dµ = Λ(1) = ‖z‖2 = 1,

so µ is a probability measure. Define U0 : Az → L2(X,µ) by

U0Az := Â

U0 is well defined since Az = 0 implies A = 0. U0 is also linear and densely defined by Thm.
10.28(5). Moreover,

‖U0Az‖2 =

∫
ÂÂdµ = Λ(Â∗A) = (Az,Az) = ‖Az‖2

So, U0 is an isometry, which extends by continuity to U : H → L2(X,µ), with ‖Ux‖ = ‖x‖
∀ x ∈ H. Since U is an isometry and H is a Hilbert space, the range of U is a complete
(hence closed) subspace of L2(µ) (which contains C(X) by definition of the Gelfand map),
so the range of U is all of of L2(µ), by the proof of Thm. 10.10(b). Thus, U is unitary.

Now, if A,B ∈ A, UAU−1B̂ = UABz = ÂB = MÂB, so UAU−1 = MÂ on a dense set

{B̂ : B ∈ A} ⊆ L2(X,µ), so UAU−1 = MÂ on all of L2(X,µ). Let N := UAU−1, and let
M :=M(X,µ). We just showed N ⊆ M. Now, if T ∈ M, then T ∈ N ′, so U−1TU ∈ A′.
But A′ = A (Thm. 10.28(1)), so U−1TU ∈ A, i.e. T ∈ N , therefore M = N . �

Theorem 10.30. (Spectral theorem, Multiplication Operator Form) Let {Aα} be
a family of bounded normal operators on a complex separable Hilbert space H. Assume the
family is commuting: AαAβ = AβAα ∀α, β, and AαA

∗
β = A∗βAα ∀α, β. Then ∃ a finite

measure space (X,µ) and a unitary operator U : H → L2(X,µ) and for each α ∃ a function
fα ∈ L∞ such that UAαU

−1 = Mfα

Proof. Let A0 be the algebra generated by the {Aα, A∗α}. Note that A0 is a commutative ∗
algebra. Using Zorn’s lemma, ∃ a largest such ∗ algebra A. We then claim that A = A′. If
B ∈ A′, then B∗ ∈ A′, so C := B + B∗ ∈ A′. Then the algebra generated by A and C is
commutative and self-adjoint, so C ∈ A. Similarly, i(B−B∗) ∈ A, so B ∈ A, so A′ = A, so
A is m.a.s.a., so we may apply Thm. 10.29. �

Theorem 10.31. (Spectral theorem, Projection Valued Measure Form) Let A be
a bounded normal operator on a separable Hilbert space H. There exists a unique projection
valued Borel measure E on C with compact support such that

A =

∫
C
zdE

Moreover, if D is any bounded operator on H, then D commutes with A and A∗ if and only
if D commutes with E(B) for all Borel sets B.
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Proof idea: From the previous theorem, UAU−1 = Mf . Now, G(B) := M1f−1(B)
is a

projection valued measure. Define E(B) := U−1G(B)U .

Theorem 10.32. (Spectral theorem for a bounded Hermitian operator) If A is a
bounded Hermitian operator on a separable Hilbert space H, then ∃ a unique projection-valued
Borel measure E(·) on the line with compact support such that

A =

∫ ∞
−∞

λdE(λ)

And for all real Borel sets B, E(B) ⊆ σ(A)

Theorem 10.33. (Spectral theorem for a unitary operator) Let U be a unitary op-
erator on a separable Hilbert space. Then ∃ a unique projection-valued Borel measure E(·)
on [0, 2π) such that

U =

∫ 2π

0

eiθdE(θ)

And E(B) ⊆ σ(U) for all Borel sets B.

Theorem 10.34. (von Neumann’s criteria for self adjointness) Let T be a sym-
metric operator on a Hilbert space H. Then the following three statements are equivalent:

(a) T is self-adjoint
(b) T is closed and ker(T ∗ + i) = ker(T ∗ − i) = {0}
(c) Range(T + i)=Range(T − i)= H

Theorem 10.35. (Spectral Theorem, Unbounded case, Multiplication operator
form) Let T be a self-adjoint operator on a separable Hilbert space H. Then ∃ a finite
measure space (X,µ), a unitary operator U : H → L2(X,µ) and a real valued measurable
function f on X such that

UTU−1 = Mf

Proof. (Sketch) From Thm. 10.34, T + i is bijective from DT to H, so its inverse (T + i)−1

exists. One can also check that ‖(T + i)φ‖2 = ((T + i)φ, (T + i)φ) = ‖Tφ‖2 + ‖φ‖2 ≥
‖φ‖2, so (T + i)−1 is bounded, and we can apply the bounded spectral theorem and write
U(T + i)−1U = Mg. Since (T + i)−1 is bijective, so is Mg. In particular, g can be zero only
on a set of measure zero. Therefore f := (1/g)− i is well-defined. This is our desired f . �

Theorem 10.36. (Spectral Theorem, Unbounded case, Projection valued measure
form) Let T be a self-adjoint operator on a separable complex Hilbert space H. Then ∃ a
projection valued measure E(·) on the Borel sets of the line such that

T =

∫ ∞
−∞

λdE(λ)

Theorem 10.37. (Facts about Compact Operators, etc.) Let A : H → K be a linear
map between two Banach spaces.

(1) If A is compact then A is bounded.

(2) Let A be compact and let B(0, n) = {x : ‖x‖ ≤ n}. Then A(B(0, n)) is compact

and therefore separable. Since the range of A is ∪n≥1A(B(0, n)), the range of A is
separable.
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(3) Let {An} be a sequence of compact operators such that ‖An − A‖ → 0. Then A is
compact.

(4) Define αn(A) := inf{‖A− An‖ : An : H → K, rank(An) < n}, where n = 1, 2, . . . .
For n,m ≥ 1 and for all operators A,B:

αn+m−1(A+B) ≤ αn(A) + αm(B)

αn+m−1(A ◦B) ≤ αn(A) · αm(B)

(5) For 0 < p <∞ define Ap(X, Y ) as the set of all operators A : X → Y with ap(A) :=

(
∑∞

n=1 αn(A)p)
1
p < ∞. The quantity ap(A) is a quasi-norm that makes Ap(X, Y ) a

quasi-Banach operator ideal.
(6) If A ∈ Ap(X, Y ) and B ∈ Aq(Y, Z) then BA ∈ As(X,Z) with 1/s = 1/p+ 1/q.
(7) If A : X → Y is compact then αn(A) = αn(A∗). In particular, A∗ is also compact, by

(3).

Proof of (3): Let {xn} with ‖xn‖ ≤ 1. A diagonalization argument gives a subsequence
{yn} ⊆ {xn} such that for all j, Ajyn converges as n→∞. Then

‖Ayk − Ay`‖ ≤ ‖Ayk − Aiyk‖+ ‖Aiyk − Aiy`‖+ ‖Aiy` + Ay`‖
≤ 2 ‖A− Ai‖+ ‖Aiyk − Aiy`‖

So lim supk,`→∞ ‖Ayk − Ay`‖ ≤ 2 ‖A− Ai‖ which can be made arbitrarily small. Therefore,
A(B(0, 1)) is a compact set, as desired.

Proof of (4): Given An, Bm of rank less than n,m respectively, consider (A+B)− (An+
Bm). The first inequality follows. For the second inequality, note that

‖AB − (AnB + ABm − AnBm)‖ = ‖(A− An)(B −Bn)‖ ≤ ‖A− An‖ ‖B −Bm‖

So, using that rank(AnB +ABm−AnBm) ≤ rank(An(B −Bm)) + rank(ABm) < n+m− 1,
we get

αn+m−1(AB) ≤ inf
An,Bm

‖A− An‖ ‖B −Bm‖ = αn(A)αn(B)

Proof of (5): Using that the αn’s are decreasing in n, (4), and the Lp (quasi)-triangle
inequality,

ap(A+B) =

(
∞∑
n=1

αn(A+B)p

) 1
p

≤

(
2
∞∑
n=1

α2n−1(A+B)p

) 1
p

≤ 2
1
p

(
∞∑
n=1

(αn(A) + αn(B))p

) 1
p

≤ Cp(ap(A) + ap(B))

Since also ap(λA) = |λ| ap(A), we see that ap(A) is a quasi-norm and Ap(X, Y ) is a linear
subspace of L(X, Y ). Since αn(A) = 0 if rank(A) < n, Ap(X, Y ) contains finite rank
operators.

Since α1(A) = ‖A‖ and the sequence {αn(A)} is decreasing in n, (4) shows αn(CBA) ≤
αn(C)αn(B)αn(A) ≤ ‖C‖αn(B) ‖A‖, so ap(CBA) ≤ ‖C‖ ap(B) ‖A‖. In particular, if B ∈
Ap(X, Y ), A ∈ Ap(Z,X) and C ∈ Ap(Y, V ), then CBA ∈ Ap(Z, V ). For any rank-one
operator A : X → Y of the form A(x) = x∗(x) · y, ap(A) = α1(A) = ‖A‖ = ‖x∗‖ ‖y‖.
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It remains to show that (Ap(X, Y ), ap(·)) is complete. This procedure is mostly routine.
Starting with a Cauchy sequence, take a rapidly convergent subsequence, use α1(·) = ‖·‖ to
get a limit, use the (quasi)-triangle inequality for `p, and so on.

Proof of (6): From (4) and Hölder’s inequality,

as(BA) =

(
∞∑
n=1

αn(BA)s

) 1
s

≤ 2
1
s

(
∞∑
n=1

α2n−1(BA)s

) 1
s

≤ 2
1
s

(
∞∑
n=1

αn(A)s · αn(B)s

) 1
s

≤ 2
1
sap(A)aq(B)

Proof of (7): If An has rank(An) < n with ‖A− An‖ < αn(A) + ε then A∗n has
rank(A∗n) < n (if S is a finite independent spanning set for An(X), then A∗n(y∗) is de-
termined by evaluating y∗ on S, so apply Thm. 10.17(c)). So, αn(A∗) ≤ ‖A∗ − A∗n‖ =
‖A− An‖ < αn(A) + ε, so αn(A∗) ≤ αn(A). It remains to show that αn(A∗) ≥ αn(A).
It suffices to show αn(A∗∗) ≥ αn(A), since combining this with our first inequality gives
αn(A∗) ≥ αn(A∗∗) ≥ αn(A).

Fix n, ε > 0, and V a finite ε-net in T (BX). Since T is compact, Goldstine, Thm. 10.18,
and Hahn-Banach, Thm. 10.4(d) show that ι(T (BX)) is norm-dense in T ∗∗(BX∗∗), so ι(V )
is also an ε-net in T ∗∗(BX∗∗). Let Tn : X∗∗ → Y ∗∗ with rank(Tn) < n and ‖T ∗∗ − Tn‖ ≤
αn(T ∗∗) + ε. Let E = span{ι(V ) ∪ Tn(X∗∗)}. From the principle of local reflexivity, Thm.
10.21, there exists φ : E → Y with ‖φ‖ ≤ 1 + ε and φ|E∩ι(Y ) = id, so φ|ι(V ) = id. For x ∈ X
with ‖x‖ ≤ 1 fix v ∈ V with ‖Tx− v‖ ≤ ε. Then

‖Tx− φTnιx‖ ≤ ε+ ‖v − φTnιx‖ ≤ ε+ (1 + ε) ‖ι(v)− Tnιx‖
≤ ε+ (1 + ε)(‖ι(v)− ι(Tx)‖+ ‖ι(Tx)− Tnιx‖)
≤ ε+ (1 + ε)(ε+ ‖T ∗∗ιx− Tnιx‖)
≤ ε+ (1 + ε)(ε+ ε+ αn(T ∗∗))

using that ι is a linear isometry, that ι(Tx) = T ∗∗ι(x), and the definition of Tn. Since φTnι
has rank less than n and ε is arbitrary, we conclude that αn(T ) ≤ αn(T ∗∗). �

Theorem 10.38. (Riesz Theory for Compact Operators) Let C : H → H be a com-
pact operator on a Banach space H. Let B = id− C and B∗ = id− C∗.

(1) ker(B) is finite dimensional.
(2) If B is injective then B is surjective.
(3) dim ker(B) = dim ker(B∗).
(4) Every nonzero point λ of the spectrum of C is an eigenvalue of finite multiplicity.

(That is dim ker(λ− C) is finite.) Moreover, the multiplicity of λ for C is the same
as for C∗. The only possible cluster point of the spectrum of C is zero.

(5) If C has an infinite number of eigenvalues then 0 is a cluster point of eigenvalues.
So, the eigenvalues can be arranged in a sequence converging to zero. (Just apply
(4).)

(6) If C is a compact normal operator on a separable complex Hilbert space H, then there
is a finite or infinite sequence Pn of mutually orthogonal finite dimensional projections
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such that

C =
∞∑
n=1

λnPn (or C =
k∑

n=1

λnPn)

where {λn} are the nonzero eigenvalues of C and the series converges in the operator
norm. Moreover, H has an orthonormal basis consisting of eigenvectors of C.

Proof of (1): We begin with a few claims.
Claim 1: A finite dimensional subspace F ⊆ H is closed in H.
Claim 2: Let H0 ⊆ H be a closed proper subspace. For any ε > 0, ∃ x0 ∈ H with ‖x0‖ = 1

and ‖x− x0‖ ≥ 1− ε for all x ∈ H0.
Claim 3: Any locally compact Banach space is finite dimensional.
To prove Claim 1, recall that any two norms on a finite dimensional linear space are

equivalent, so the norm on F is equivalent to any Euclidean norm on F . Therefore F is
complete in its own norm. Let {xn}∞n=1 ⊆ F be such that xn → x ∈ H. Then {xn} is
Cauchy in F , but F is complete, so xn → y ∈ F . By uniqueness of limits in H, x = y. So
x ∈ F and F is closed in H.

To prove Claim 2, let ε < 1, z0 /∈ H0, d = infx∈H0 ‖x− z0‖. For any δ > 0, ∃ z ∈ H0 with
‖z − z0‖ ≤ d + δ. Let δ := εd/(1 − ε), so that z is determined from the previous sentence,
and let x0 := (z − z0)/ ‖z − z0‖. Then ‖x0‖ = 1 and if x ∈ H0, then (‖z − z0‖)x− z ∈ H0,
so

‖x− x0‖ =
‖(‖z − z0‖)x− z + z0‖

‖z − z0‖
≥ d

‖z − z0‖
≥ d

d+ δ
= 1− ε

To prove Claim 3, we instead prove its contrapositive. Assume H is infinite dimensional.
We construct a sequence x1, x2, . . . ⊆ H with ‖xn‖ = 1, ‖xi − xj‖ ≥ 1/2, i 6= j. Let x1

with ‖x1‖ = 1. Given x1, . . . , xn, let H0 = span{x1, . . . , xn}. By Claim 1, H0 is closed. By
Claim 2, ∃ xn+1 such that ‖xi − xn+1‖ ≥ 1/2 for i = 1, . . . , n. The sequence {xn} has no
Cauchy subsequence, so the closed unit ball of H is not compact. By scaling, the closed ball
of radius r > 0 is also not compact.

We can now finally prove (1). Let H0 = ker(B). Then x ∈ H0 if and only if Cx = x, i.e.
C|H0 = id. But C maps the unit ball of H0 into a totally bounded set, i.e. the unit ball of
H0 is locally compact. Therefore H0 is finite dimensional by Claim 3.

Proof of (2): We first claim that B = id−C satisfies ‖Bx‖ ≥ m ‖x‖ for all x ∈ H. If not,
then there exists a sequence {yn} with ‖yn‖ = 1 and Byn → 0. Since C is compact, we may
take a subsequence {ynj} so that Cynj converges. Since Bynj = (id− C)ynj converges also,
(B+C)ynj = ynj converges. Let y = lim ynj . Since ‖yn‖ = 1, ‖y‖ = 1, but By = limByn = 0
so B is not injective. Since we have arrived at a contradiction, the claim follows.

Let M ⊆ H be a closed subspace. Then B(M) is closed. To see this, suppose Bxn → y.
Then {xn} is bounded since ‖Bxn‖ ≥ m ‖xn‖. We may take a subsequence so that Cxnj
converges, so (B + C)xnj = xnj converges. Let x = lim xnj , so that Bx = limBxnj = y, i.e.
y ∈ B(M) as desired.

Suppose for the sake of contradiction that Range(B) 6= H. Let H0 = H,H1 = BH0, H2 =
BH1, and so on. Then Hm+1 is a closed and proper subspace of Hm. (If E,F ⊆ H are
closed with F = BH,E = BF = B2H and f ∈ F then Bf =: e /∈ F implies B2f = Be
with B2f ∈ E and Be /∈ E by injectivity, a contradiction. So E ⊆ F .) By Claim 2 of (1), ∃
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xn ∈ Hn with ‖xn‖ = 1 and d(xn, Hn+1) ≥ 1/2. If n > m,

Cxm − Cxn = xm −Bxm − xn +Bxn =: xm − x, with x ∈ Hm+1

So ‖Cxm − Cxn‖ ≥ d(xm, Hm+1) ≥ 1/2. So the sequence {Cxn} contains no Cauchy subse-
quence, contradicting compactness of C. Therefore Range(B) = H.

Proof of (3): Using (1) and Thm. 10.37(7), let x1, . . . , xn be a basis for ker(B) and
let η1, . . . , ην be a basis for ker(B∗). By Hahn-Banach (Thm. 10.4(a)) ∃ ξj ∈ H∗ with
ξj(xi) = δij, i, j = 1, . . . , n. Let K = kerB∗ ⊆ H∗ and let R : H → H∗∗ be such that
R(x) = ι(x)|K . We claim that R : H → K∗ is surjective. If not, ∃ u ∈ K, u 6= 0 such that,
for all x ∈ H, u(x) = R(x)(u) = 0. But then u = 0, a contradiction. Therefore R : H → K∗

is surjective. So using Hahn-Banach again and the surjectivity of R, ∃ y1, . . . , yν in H such
that ηj(yi) = δij, i, j = 1, . . . , ν.

Suppose for the sake of contradiction that n < ν and define

C ′x := Cx+
n∑
j=1

ξj(x)yj

Since C ′ is the sum of two compact operators, C ′ is compact. Let B′ = id−C ′. We claim that
B′ is injective. To see this, suppose B′x0 = 0. Since B−B′ = (id−C)− (id−C ′) = C ′−C,
we see that Bx0 =

∑n
j=1 ξj(x0)yj. Using ηi ∈ kerB∗, the previous sentence, and the choice

of the yj,

0 = B∗ηi(x0) = ηi(Bx0) =
n∑
j=1

ξj(x0)ηi(yj) = ξi(x0)

Therefore Bx0 = 0, so x0 =
∑n

j=1 αjxj by definition of the xj. But then 0 = ξi(x0) = αi by
definition of the ξi, so x0 = 0. We conclude that kerB′ = 0.

By (2), B′ is also surjective. So ∃ x ∈ H with yn+1 = B′x. Since B −B′ = C ′ − C,

1 = ηn+1(yn+1) = ηn+1(B′x) = ηn+1(Bx)− ηn+1

(
n∑
j=1

ξj(x)yj

)

= B∗(ηn+1)(x)−
n∑
j=1

ξj(x)ηn+1(yj) = 0− 0 = 0

Since ηn+1 ∈ kerB∗ and using the definition of ηn+1. Since we have achieved a contradiction,
we conclude that n ≥ ν.

Since n ≥ ν, dim kerB ≥ dim kerB∗. Since C∗ is compact by Thm. 10.37(7), we conclude
that dim kerB∗ ≥ dim kerB∗∗. Since B∗∗ιx = ι(Bx), dim kerB∗∗ ≥ dim kerB. Combining
these inequalities concludes the proof.

Proof of (4): Suppose λ 6= 0 is in σ(C). Then id− λ−1C is not invertible. Since λ−1C is
compact, 1− λ−1C may not be invertible due to either a lack of injectivity (in which case λ
is an eigenvalue, of finite multiplicity by (1)), or due to a lack of surjectivity (in which case
1− λ−1C is also not injective by (2), so the first case applies). If 1− λ−1C is bijective, then
it is also invertible by the Open Mapping Theorem, Thm. 10.7 (or by the proof of (2)). By
(3), dim ker(λ− C) = dim ker(λ− C∗) for λ 6= 0, using ker(λ− C) = ker(1− λ−1C).

We now prove by contradiction that zero is the only possible cluster point of σ(C). Let
λn ∈ σ(C) with λn → λ 6= 0. Without loss of generality, λn 6= λm for n 6= m and ∃ ε > 0 with
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|λn| ≥ ε for all n. By the part of the theorem already proven, ∃ xn 6= 0 with Cxn = λnxn. We
claim that {xn} is linearly independent. If not, let N be the smallest integer such that a linear

relation holds: xN =
∑N−1

j=1 αjxj with some αj 6= 0. Then λNxN = CxN =
∑N−1

j=1 αjλjxj,

i.e. λN
∑N−1

j=1 αjxj =
∑N−1

j=1 αjλjxj, i.e.
∑N−1

j=1 αj(λN − λj)xj = 0. By minimality of N and

the distinctness of the λj, αj = 0 for j = 1, . . . , n − 1, a contradiction. Therefore, {xn} is
linearly independent.

Let Hn := span{x1, . . . , xn}. Then Hn is a strictly increasing sequence of subspaces. By
Claim 2 of (1), ∃ yn ∈ Hn with ‖yn‖ = 1 and ‖yn − x‖ ≥ 1/2 for all x ∈ Hn−1. Let y ∈ Hn

so that y =
∑n

j=1 αjxj and Cy − λny =
∑n

j=1 αj(λj − λn)xj ∈ Hn−1. Let n > m. Then

‖Cyn − Cym‖ = ‖(Cyn − λnyn) + λnyn − λmym + (λmym − Cym)‖
=: ‖λnyn − z‖ , with z ∈ Hn−1

≥ |λn|
2
≥ ε

2

using the choice of yn and the definition of ε. Therefore, {Cym} contains no Cauchy subse-
quence, a contradiction. We conclude that λ = 0, as desired.

Proof of (6), sketch: From the Spectral Theorem, Thm. 10.31, we may write

C =

∫
σ(C)

λdE(λ)

Let λ1, λ2, . . . be the nonzero eigenvalues of C. Let Pn := E({λn}). �

Theorem 10.39. (Facts about Semigroups of Operators, etc.) Let Tt : H → H
be a strongly continuous contraction semigroup. Define H0 as the set of f ∈ H such that
limt↓0 Ttf = f .

(1) H0 is closed
(2) Tt leaves the subspace H0 invariant. For f ∈ H0, Ttf is strongly continuous on t ≥ 0

(lims→0 Tt+sf = Ttf). For f ∈ DA, Af ∈ H0.
(3) H0 = DA
(4) If f ∈ DA, then Ttf is strongly differentiable, and dTtf

dt
= ATtf = TtAf . Also,

Ttf − f =
∫ t

0
TsAfds

(5) The operator A is closed. (If fn ∈ DA, if fn → f and if Afn → g then f ∈ DA and
Af = g).

(6) Let g ∈ H0, λ > 0. The equation λf − Af = g has exactly one solution f ∈ DA.
Moreover, f satisfies f = Rλ(g) :=

∫∞
0
e−λtTtgdt. The operator Rλ is linear and

‖Rλg‖ ≤ 1
λ
‖g‖. (So, (λ − A) : DA → H0 is bijective, and (λ − A)−1 = Rλ. Rλ is

called the resolvent of A. Note also that Rλ(H0) = DA. Moreover, the proof shows
that Rλ(H) ⊆ H0.)

(7) Let U be a linear operator that extends A. Suppose D satisfies: (i) DA ⊆ D ⊆ H0,
(ii) D ⊆ DU and U(D) ⊆ H0, (iii) If Uf = f and f ∈ D then f = 0. Given such D,
we conclude that D = DA.

Proof of (1): Let fn ∈ H0 with fn → f . Then

‖Ttf − f‖ ≤ ‖Ttf − Ttfn‖+ ‖Ttfn − fn‖+ ‖fn − f‖ ≤ 2 ‖fn − f‖+ ‖Ttfn − fn‖
Now choose n so that ‖fn − f‖ is small, and then choose t so that ‖Ttfn − fn‖ is small.
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Proof of (2): Let f ∈ H0. If h ↓ 0, then ‖Tt+hf − Ttf‖ = ‖Tt(Thf − f)‖ ≤ ‖Thf − f‖ →
0. If h ↑ 0, ‖Tt+h − Ttf‖ = ‖Tt+h(f − T−hf)‖ ≤ ‖f − T−hf‖ → 0. Therefore, limh→0 Tt+hf =
Ttf . The first two assertions follow. Now, let f ∈ H. If limt↓0 Ttf is not equal to f , or this
limit does not exist, then Af is undefined. Therefore, DA ⊆ H0. Let f ∈ DA so that f ∈ H0.
Then the third assertion follows by the definition A(f) := limh↓0

Thf−f
h

and from (1).
Proof of (3): As shown in (2), DA ⊆ H0. It is therefore sufficient to show that any f ∈ H0

can be approximated by elements of DA. If f ∈ DA, then Ttf is strongly continuous for
t ≥ 0 by (2), so Ttf is strongly integrable on any finite interval in [0,∞). Let ga :=

∫ a
0
Ttfdt.

Observe

Thga =

∫ a

0

ThTtfdt =

∫ a

0

Th+tfdt =

∫ h+a

h

Ttfdt = ga +

∫ a+h

a

Ttfdt−
∫ h

0

Ttfdt

Therefore

lim
h↓0

Thga − ga
h

= lim
h↓0

(
1

h

∫ a+h

a

Ttfdt−
1

h

∫ h

0

Ttfdt

)
= Taf − f

So, ga ∈ Da. Finally, by definition of ga, limh↓0 gh/h = f , as desired.
Proof of (4): For t, h ≥ 0,

Tt

(
Thf − f

h

)
=
TtThf − Ttf

h
=
Tt+hf − Ttf

h
=
ThTtf − Ttf

h
(∗)

If f ∈ DA, then limh↓0
Thf−f
h

= Af , so limh↓0 Tt
(
Thf−f
h

)
= TtAf . So, using (∗), we conclude

that limh↓0
Tt+hf−Ttf

h
=: d+Ttf

dt
, with Ttf ∈ DA, and with d+Ttf

dt
= ATtf = TtAf .

We now need to show that limh↓0
Ttf−Tt−hf

h
= d+Ttf

dt
. For t > h > 0, we have∥∥∥∥Ttf − Tt−hfh

− TtAf
∥∥∥∥ ≤ ∥∥∥∥Tt−h(Thf − fh

− Af
)∥∥∥∥+ ‖Tt−h(Af − ThAf)‖

≤
∥∥∥∥Thf − fh

− Af
∥∥∥∥+ ‖Af − ThAf‖

By (2), Af ∈ H0, so, limh↓0
Ttf−Tt−hf

h
= TtAf = d+Ttf

dt
, as desired. Finally,

∫ t
0
TsAfds =∫ t

0
dTsf
ds
ds = Ttf − f , as desired.

Proof of (5): From (4), Ttfn − fn =
∫ t

0
TsAfnds. Letting n → ∞, (noting that

‖
∫ t

0
(TsAfn − Tsg)‖ ≤

∫ t
0
‖Ts‖ ‖Afn − g‖), we get Ttf − f =

∫ t
0
Tsgds. So limt→0

Ttf−f
t

=

limt↓0
1
t

∫ t
0
Tsgds = g. So f ∈ DA and Af = g, as desired.

Proof of (6): First note that
∫∞

0
e−λtTtg is well-defined since the integrand is strongly

continuous by (2), with norm bounded by e−λt ‖g‖. Linearity of Rλ follows by its definition.
Note that

∥∥∫∞
0
e−λtTtgdt

∥∥ ≤ ∫∞
0
e−λt ‖g‖ dt = 1

λ
‖g‖. Also,

Thf =

∫ ∞
0

e−λtTt+hgdt =

∫ ∞
h

e−λ(t−h)Ttgdt

= eλh
∫ ∞
h

e−λtTtgdt = eλh
(
f −

∫ h

0

e−λtTtgdt

)
by definition of f . So, Thf−f

h
= eλh−1

h
f − 1

h
eλh
∫ h

0
e−λtTtgdt. Letting h ↓ 0, the right side of

this equality goes to λf − g. Therefore, f ∈ DA, with Af = λf − g, as desired.
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We now treat uniqueness. Let g such that the equation λf−Af = g has two solutions. By
subtracting these solutions, ∃ φ ∈ DA with λφ−Aφ = 0. Since d(Ttφ)/dt = ATtφ = TtAφ =
λTtφ by (4), we conclude that d(e−λtTtφ)/dt = e−λtλTtφ+Ttφ(−λ)e−λt = 0. Integrating this

in s, we get
∫ t

0
d(e−λsTsφ)

ds
ds = e−λtTtφ− φ = 0. So, ‖φ‖ ≤ e−λt ‖φ‖ for all t > 0, i.e. φ = 0.

Proof of (7): Let f ∈ D. Then f − Uf =: g ∈ H0. By (6), ∃ f̃ ∈ DA with f̃ − Af̃ = g.

Since A ⊆ U , we conclude that f̃ − Uf̃ = g as well. Therefore, h := f − f̃ ∈ D satisfies
Uh = h, so h = 0, i.e. f = f̃ ∈ DA. �

Theorem 10.40. (Characterization of Semigroups) Let Tt : H → H be a strongly
continuous semigroup of bounded linear operators (so H = H0). Then its infinitesimal
generator A is a closed densely defined linear function. Tt is uniquely determined by A in
the sense that distinct semigroups have distinct infinitesimal generators. Moreover, if f ∈ DA
then u(t) := Ttf solves the differential equation

du

dt
(t) = Au(t), t ≥ 0, u(0) = f

Proof. Closedness of A follows from Thm. 10.39(5), and the density of DA in H0 follows
from Thm. 10.39(3). We now prove two claims

Claim 1: Let φ(t) be a Borel function such that for all λ > 0,
∫∞

0
e−λtφ(t)dt = 0. Then

φ(t) = 0 for almost all t.
Claim 2: Let ut : [0,∞) → H be a strongly continuous function such that for all λ > 0,∫∞

0
e−λtutdt = 0. Then ut = 0 for all t.

Proof of Claim 1: Letting λ = n = 1, 2, . . ., and substituting z = e−t gives
∫ 1

0
zn−1ψ(z)dz =

0 with ψ(z) := φ(− log(z)). (In particular, ψ ∈ L1.) Applying Weierstrass’s Approximation

Theorem,
∫ 1

0
f(z)ψ(z)dz = 0 for all continuous functions f . Arguing as in Thm. 10.10,∫ 1

0
f(z)ψ(z)dz = 0 for all bounded measurable functions f . In particular, letting m > 0

and f(z) = ψ(z)1|ψ|≤m gives
∫ 1

0
ψ(z)21|ψ|≤m(z)dz = 0. Letting m → ∞ by the Monotome

Convergence Theorem,
∫ 1

0
ψ(z)2dz = 0, i.e. ψ = 0, i.e. φ = 0 as desired.

Proof of Claim 2: Let ξ be a linear functional. Then
∫∞

0
e−λtξ(ut)dt = 0, so ξ(ut) = 0 for

almost all t by Claim 1. Since ξ(ut) is continuous, ξ(ut) = 0 for all t. By Hausdorfness of
the weak topology, ut = 0.

We now prove our uniqueness statement. Suppose two semigroups Tt, T
′
t have the same

infinitesimal generator A. We will show that Ttf = T ′tf for all f ∈ H0 (with H0 identical
for both Tt and T ′t). First, recall from Thm. 10.39(3) that H0 is the strong closure of
the domain of the infinitesimal generator. Therefore, H0 is in fact the same for both Tt
and T ′t . By Thm. 10.39(6), Rλ is identical for Tt, T

′
t . As a result, ∀ f ∈ H0 ∀ λ > 0,∫∞

0
e−λtTtfdt =

∫∞
0
e−λtT ′tfdt. By Claim 2, Ttf − T ′tf = 0 ∀ f ∈ H0 ∀ λ > 0, giving our

desired uniqueness.
Let f ∈ DA. We now show that ut := Ttf is the unique solution of the equation dut/dt =

Aut such that (i) ut is strongly differentiable and its derivative is strongly continuous for
t ≥ 0, (ii) ‖ut‖ is bounded, and (iii) u0 = limt↓0 ut = f .

Thm. 10.39(4) shows that ut satisfies dut/dt = Aut and (i) holds (using also Af ∈ H0 by
Thm. 10.39(2)). Then (ii) follows from (i) since ‖Ttf‖ ≤ ‖f‖. Also, using Thm. 10.39(3),
f ∈ DA ⊆ H0, so (iii) holds. We now prove uniqueness. Suppose ut is a solution of dut/dt
satisfying (i),(ii) and such that u0 = limt↓0 ut = 0. We will show that ut = 0. Define
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vt := e−λtut. By definition of ut, dvt/dt = −λe−λtut+e−λtdut/dt = −λvt+Avt. So, by Thm.
10.39(6), vt = −Rλ(dvt/dt).

Now, dvt/dt is strongly continuous, and Rλ is bounded by Thm. 10.39(6), so
∫ t

0
vsds =

−Rλ

∫ t
0
(dvs/ds)ds = −Rλ(vt − v0) = −Rλvt. By (ii), ‖vt‖ → 0 as t → ∞, so ‖Rλvt‖ ≤

‖Rλ‖ ‖vt‖ → 0 as t→∞. So, for all λ > 0,
∫∞

0
vsds =

∫∞
0
e−λsusds = 0. Applying Claim 2

shows ut = 0 for all t > 0, as desired. �

11. Appendix: Isoperimetric Inequalities

Theorem 11.1. (Prékopa-Leindler Inequality) Let f, g,m : Rn → [0,∞) be integrable.
Suppose ∀x, y ∈ Rn m(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ. Then

∫
Rn
m(x)dx ≥

(∫
Rn
f(x)dx

)λ(∫
Rn
g(x)dx

)1−λ

Proof. We induct on n. Let µn denote Lebesgue measure. Note that µ1(A + B) ≥ µ1(A) +
µ1(B) for A,B ⊆ R. (To prove this, by approximation we may assume compactness, and
then translation with max(A) = 0 = min(B) shows A+B ⊇ A∪B, etc.) By scaling, we may
assume ‖f‖∞ = ‖g‖∞ = 1. Let A := {x : f(x) ≥ t}, B := {x : g(x) ≥ t}, C := {x : m(x) ≥
t}. Let x ∈ A, y ∈ B. Then m(λx+(1−λ)y) ≥ f(x)λg(y)1−λ ≥ t. Thus, λA+(1−λ)B ⊆ C.
Applying our claim, we have µ1(C) ≥ µ1(λA + (1 − λ)B) ≥ λµ1(A) + (1 − λ)µ1(B). So,
applying the definitions of A,B,C, integrating with respect to t, and applying AMGM gives∫

R
m(x)dx ≥ λ

∫
R
f(x)dx+ (1− λ)

∫
R

g(x)dx ≥ (

∫
R
f(x)dx)λ(

∫
R
g(x)dx)1−λ

Now, let (t, s) ∈ R× Rn−1. We can check that ft0(s) = f(t0, s), gt1(s) = g(t1, s), mt(s) =
m(t, s) satisfy the hypotheses of the theorem, for t = λt0 + (1− λ)t1. So, we can apply the
inductive hypothesis (for the case n− 1). But the result is the n = 1 hypotheses, viewed as
functions of the t’s. Thus applying the n = 1 case of the theorem gives the desired result. �

Theorem 11.2. (Brunn-Minkowski Inequality) Let A,B ⊆ Rn measurable, nonempty.

(1) ∀ λ ∈ [0, 1] vol(λA+ (1− λ)B) ≥ vol(A)λvol(B)1−λ

(2) vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n

Proof. To prove (1), let m = 1(λA+(1−λ)B), f = 1A, g = 1B, and apply Prékopa-Leindler

(Thm. 11.1). To prove (2), let Ã = A
vol(A)1/n

, B̃ = B
vol(B)1/n

, λ = vol(A)1/n

vol(A)1/n+vol(B)1/n
, and apply

(1). �

Theorem 11.3. (The Isoperimetric Inequality) Let A ⊆ Rn as above. Let B = rBn
2

be the Euclidean ball, scaled so that vol(A) = vol(B) = rnvol(Bn
2 ). Then voln−1(∂B) ≤

voln−1(∂A).
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Proof. We show that vol(Aε) ≥ vol(Bε). Observe that r =
(

vol(A)
vol(Bn2 )

) 1
n
. So,

vol(Aε)
1
n = vol(A+ εBn

2 )
1
n , definition of Aε

≥ vol(A)
1
n + vol(εBn

2 )
1
n , Brunn-Minkowski, Thm. 11.2

= r vol(Bn
2 )

1
n + ε vol(Bn

2 )
1
n , definition of r

= vol((r + ε)Bn
2 )

1
n

= vol(Bε)
1
n

as desired. �

Theorem 11.4 (Spherical Isoperimetric Inequality). Among all domains of fixed vol-
ume on the sphere, one with minimal boundary volume is the geodesic ball.

Proof due to Figiel-Lindenstrauss-Milman-1977. Idea: if we start with an optimal set that
is not a geodesic ball, we can apply a finite number of symmetrizations to it so that its
interior is squished into a smaller region. This gives a contradiction, so we had a ball at the
beginning. The technical device of outer radius allows the argument to proceed rigorously.

Let Sn−1 ⊆ Rn be the unit sphere centered at the origin, and let A ⊆ Sn−1 be closed. Given
two antipodal points a, b ∈ Sn−1, let γ ⊆ Sn−1 be a geodesic joining a and b. We define the
symmetrization σγ(A) as follows. For each y ∈ γ, let Πy be the plane containing y, such that
Πy is perpendicular to the line in Rn connecting a and b. Note that Πy ∩ Sn−1 is a dilation
and translation of Sn−2, so let µn−2,y be the normalized Haar measure on Πy ∩ Sn−1. We let
σγ(A)∩Πy be a geodesic ball in Sn−2 with center y, such that µn−2,y(σγ(A)∩Πy) = µn−2,y(A∩
Πy). From Fubini’s Theorem, we have µn−1(B) = µn−1(A), where µn−1 is normalized Haar
measure on Sn−1.

We say σγ(A) is the symmetrization of A with respect to γ. Let r(A) := min{r >
0: ∃x ∈ Sn−1, A ⊆ B(x, r)} be the (outer) radius ofA. HereB(x, r) := {y ∈ Sn−1 : d(x, y) <
r} is the open ball of radius r centered at y on Sn−1, and d is the usual metric on Sn−1, so
that d(x, y) = cos−1(〈x, y〉) for all x, y ∈ Sn−1. The minimum in the definition of r(A) exists

by closedness of A and B(x, r). We claim that σγ(A) is closed.
To show this, we use the Hausdorff distance on closed sets in Sn−1, δ(A,B) := min{r >

0: Ar ⊇ B,Br ⊇ A}. (Here Ar := {x ∈ Sn−1 : d(x,A) < r}.) Let B := σγ(A). Recall that
the set of closed sets is a complete metric space with respect to the metric δ. Note that the
function y 7→ µn−2,y(A) = µn−2,y(B) is upper semicontinuous in y ∈ γ, i.e. µn−2,y0(A) ≥
lim supy→y0 µn−2,y(A) when y, y0 ∈ γ. This follows by the definition of the product topology
and by the closedness of A. Now, writing Sn−1 as Sn−2 × [−1, 1]/ ∼ where (x, 1) ∼ (x′, 1)
and (x,−1) ∼ (x′,−1) ∀ x, x′ ∈ Sn−2, we can treat A ⊆ Sn−1 as a closed set in the product
topology of Sn−2 × [−1, 1]. Given (x, y) ∈ Bc ⊆ Sn−1 × [−1, 1], we wish to find a box
F ×G ⊆ Sn−2 × [−1, 1] with F,G open, so that (x, y) ∈ F ×G and F ×G is disjoint from
B. Since B ∩Πy is a geodesic ball (which is not all of Sn−2), we can find F ×G as required,
by the upper semicontinuity of y 7→ µn−2,y(B). (Specifically, our inability to find such a box
F ×G would violate this upper semicontinuity.)

Below we also use that µn−1(·) is upper semi-continuous with respect to δ, that is if
A(1), A(2), . . . ⊆ Sn−1 satisfy limk→∞ δ(A

(k), A) = 0, then µn−1(A) ≥ lim supk→∞ µn−1(A(k)).
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To see this, let xk ∈ A(k) for any k ≥ 1. Since d(xk, A) ≤ δ(A(k), A) → 0 as k → ∞, any
limit point of the set {xk}∞k=1 must be contained in A. Therefore, for any fixed ε > 0, there
exists K > 0 such that k ≥ K implies A(k) ⊆ Aε. Let λ > µn−1(A). Since µn−1 is a Borel
measure, there exists an open set U such that A ⊆ U and µn−1(U) < λ. Since A is compact,
d(A,U c) > 0, and there exists ε > 0 such that Aε ⊆ U . Combining these observations,
lim supk→∞ µn−1(A(k)) ≤ µn−1(Aε) ≤ µn−1(U) < λ. Therefore, lim supk→∞ µn−1(A(k)) ≤
µn−1(A), as desired.

We are now ready to proceed by inducting on n. For the case n = 1, the theorem is clear.
We require the following claims, which are proven by induction.

Claim 1: Let A ⊆ Sn−1 be closed, and define

M(A) := {C ⊆ Sn−1 : C is closed,

µn−1(C) = µn−1(A), µn−1(Cε) ≤ µn−1(Aε) ∀ ε > 0}

Then there is a B ∈M(A) with minimal radius, i.e. min{r(C) : C ⊆M(A)} exists.
Claim 2: Let A ⊆ Sn−1 be closed. Then for every half circle γ, σγ(A) ∈M(A).
Claim 3: Let B ⊆ Sn−1 be a closed set that is not a geodesic ball. There exists a finite

family of half circles {γi}ni=1 ⊆ Sn−1 so that r(σγn(σγn−1(· · ·σγ1(B) · · · ))) < r(B).
We prove the theorem assuming these claims. By definition of M(A), B ∈ M(A) and

C ∈ M(B) implies C ∈ M(A). So, using Claim 2, B ∈ M(A) and σγ1(B) ∈ M(B) implies
σγ1(B) ∈M(A), σγ2(σγ1(B)) ∈M(A), etc. Using Claim 3, we therefore see that an element
of minimal (outer) radius in M(A) must be a geodesic ball. Claim 1 says that this minimal
element must exist, so M(A) must contain a geodesic ball. The theorem is therefore proven.
We now prove the claims.

Proof of Claim 1: B 7→ r(B) is continuous (with respect to the Hausdorff metric for
B ⊆ Sn−1), so it suffices to show that M(A) is a closed subset in the space of closed subsets
of Sn−1 (since the latter space is compact with respect to δ). Let B(1), B(2), . . . ∈M(A) with
limk→∞ δ(B

(k), B) = 0 for some B ⊆ Sn−1, and let ε ≥ 0. We will show B ∈M(A). For any

fixed η > 0, there exists K > 0 such that, if k ≥ K, then B ⊆ B
(k)
η , so Bε ⊆ B

(k)
ε+η. So, for

all k ≥ K, µn−1(Bε) ≤ µn−1(B
(k)
ε+η) ≤ µn−1(Aε+η), since B(1), B(2), . . . ∈M(A). Therefore,

µn−1(Bε) ≤ inf
η>0

µn−1(Aε+η) = µn−1(∩η>0Aε+η) = µn−1(Aε)

So, letting ε = 0, we get µn−1(B) ≤ µn−1(A). Moreover, µn−1(B) ≥ lim supk→∞ µn−1(B(k)) =
µn−1(A), using the upper semicontinuity of µn−1(·) mentioned above, and the definition of
B(1), B(2), . . . ∈M(A). So B ∈M(A), as desired.

Proof of Claim 2: Let A ⊆ Sn−1 be closed and let γ be a half circle on Sn−1 joining z ∈
Sn−1 with −z. Let u be the midpoint of γ. As usual, identify Sn−2,u := Sn−1∩Πu with Sn−2.
For any y ∈ γ, y 6= ±x, define a map τy : Sn−2,y → Sn−2,u by letting τy(x) := γ ∩ Sn−2,u for
any x ∈ Sn−2,y. (Note that this intersection is a single point). By applying polar coordinates,
we see that there exists a function f such that, if y1, y2 ∈ γ and if x1 ∈ Sn−2,y1 , x2 ∈ Sn−2,y2 ,
we have

d(x1, x2) = f(y1, y2, d(τy1(x1), τy2(x2))).

Moreover, for y1, y2 fixed, f is monotonically increasing with respect to its third argument,
d(τy1(x1), τy2(x2)) ≤ π.
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For every y1, y2 ∈ γ, ε > 0 (with d(y1, y2) < ε) there is an η(y1, y2, ε) so that, for every
C ⊆ Sn−2,y1 , we have

Cε ∩ Sn−2,y2 = τ−1
y2

((τy1C)η(y1,y2,ε)) (∗)
To see this, it suffices to consider the case that C = {x1}. Then

Cε ∩ Sn−2,y2 = {x2 ∈ Sn−2,y2 : d(x1, x2) < ε}
= {x2 ∈ Sn−2,y2 : f(y1, y2, d(τy1(x1), τy2(x2))) < ε}
= {x2 ∈ Sn−2,y2 : d(τy1(x1), τy2(x2)) < η}

Here η is determined by the existence and monotonicity of f . (If d(y1, y2) ≥ ε, then
Cε ∩ Sn−2,y2 = ∅.) Note that the subscript ε on the left of (∗) denotes an ε neighborhood in
Sn−1, whereas the subscript η on the right of (∗) denotes an η neighborhood in Sn−2. Let
Ay := A ∩ Sn−2,y. By fixing y2 = y and varying y1 = z in (∗), we have

τy((Aε)
y) = ∪{z∈γ : d(z,y)<ε}(τz(A

z))η(z,y,ε) (∗∗)
Substituting B := σγ(A) gives

τy((Bε)
y) = ∪{z∈γ : d(z,y)<ε}(τz(B

z))η(z,y,ε) (†)
By definition of B, τz(B

z) is a geodesic ball in Sn−2,u ∀ z ∈ γ, and µn−2,u(τz(B
z)) =

µn−2,u(τz(A
z)). So, the induction hypothesis (i.e. the full theorem) says

µn−2,u((τz(B
z))η(z,y,ε)) ≤ µn−2,u((τz(A

z))η(z,y,ε)) (‡)
for admissible y, z, ε. Since the sets on the right side of (†) are all (n − 2)-dimensional
geodesic balls with the same center, we have

µn−2,u(τy(Bε)
y) = sup

z∈γ : d(z,y)≤ε
µn−2,u((τz(B

z))η(z,y,ε))

≤ sup
z∈γ : d(z,y)≤ε

µn−2,u((τz(A
z))η(z,y,ε)) , from (‡)

≤ µn−2,u(τy(Aε)
y) , from (∗∗)

Re-writing this inequality, we see that for every y ∈ γ, y 6= ±x we have

µn−2,y((Bε)
y) ≤ µn−2,y((Aε)

y)

So by Fubini’s Theorem, we can integrate this inequality to get µn−1(Bε) ≤ µn−1(Aε), so
that B ∈M(A) as desired.

Proof of Claim 3: Let B ⊆ Sn−1 be closed, and suppose B is not a geodesic ball. Let
r = r(B) as above, and let u ∈ Sn−1 be such that B ⊆ B(u, r). Let γ be a half circle with

midpoint u, so that we will symmetrize with respect to γ, leaving B(u, r) fixed. Since B is
not a geodesic ball, E := Bc ∩ ∂B(u, r) 6= ∅.

We need two observations. First, any symmetrization σγ does not decrease the set E. That
is, E ⊆ (σγ(B))c∩∂B(u, r). Second, we can find symmetrizations that increase E. To see the
second claim, let G ⊆ ∂B(u, r) be a relatively open set. Given any x ∈ ∂B(u, r) rG, there
exists a relatively open set Gx ⊆ ∂B(u, r) and γx such that x ∈ Gx, and Gx∩σγx(B) = ∅. To
construct γx, consider the straight line ` (in Rn) between x and some point y ∈ Bc∩∂B(u, r)
(which exists since B is not a ball). Let P reflect ∂B(u, r) across a hyperplane perpendicular
to ` and intersecting ` at its midpoint. Then, let Gx be a small ball (in ∂B(u, r)) around
x disjoint from G, such that PGx ⊆ Bc ∩ ∂B(u, r) (which is possible since B is closed).
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Observe that Gx does what we claimed above. Also note that Gx, γx depend on x and G,
but not on B.

Now, apply the above observations to B and G := Bc ∩ ∂B(u, r) to produce γ1, Gx1 .
Then, apply these same observations to σγ1(B) and G := σγ1(B)c ∩ ∂B(u, r) to produce γ2

and Gx2 , and so on. By compactness of Sn−1 (using a cover by {Gxi}i≥1), after a finite
number of symmetrizations we have σγn(· · ·σγ1(B) · · · ) disjoint from ∂B(u, r). Therefore,
r(σγn(· · ·σγ1(B) · · · )) < r(B). �

As an application, we prove the following concentration of measure result. Note that the
exponential dependence on n implies that almost all of a high dimensional sphere is close to
any given set of Haar measure 1/2. Put another way, a high dimensional sphere has a “large
waist.”

Theorem 11.5 (Concentration of measure on the sphere). Let µ be the normalized
Haar measure on Sn+1. Let A ⊆ Sn+1, let ε > 0, and define Aε := {x ∈ Sn+1 : ∃y ∈
Sn+1 with dSn+1(x, y) ≤ ε}. If µ(A) ≥ 1/2 then µ(Aε) ≥ 1−

√
π
8
e−ε

2n/2.

Proof. By Theorem. 11.4, it suffices to prove this claim for geodesic balls, i.e. it suffices to
analyze the quantity

µ(B(π/2 + ε)) =

∫ ε
−π/2 cosn(t)dt∫ π/2
−π/2 cosn(t)dt

.

For any n ≥ 1, let In :=
∫ π/2

0
cosn(t)dt. Changing variables and using cos(t) ≤ e−t

2/2, valid
for any 0 ≤ t ≤ π/2 (which follows since f(t) := log cos t satisfies f ′′(t) = −1/ cos2(t) ≤ −1
for all 0 ≤ t ≤ π/2),

1− µ(B(π/2 + ε)) =

∫ π/2

ε

cosn(t)
dt

2In
=

1√
n

∫ (π/2)
√
n

ε
√
n

cosn(t/
√
n)

dt

2In

≤ 1√
n

∫ (π/2)
√
n

ε
√
n

e−t
2/2 dt

2In
≤ 1√

n
e−ε

2n/2

∫ (π/2−ε)
√
n

0

e−t
2/2 dt

2In

≤ 1√
n
e−ε

2n/2

∫ ∞
0

e−t
2/2 dt

2In
=

1

2
√
nIn

e−ε
2n/2
√
π/2.

Integration by parts shows that In = n−1
n
In−2. Since (n− 1)/

√
n(n− 2) ≥ 1 for any n ≥ 3,

we get
√
nIn ≥

√
n− 2In−2 for any n ≥ 3, so that
√
nIn ≥ min(I1,

√
2I2) = min(1,

√
2π/4) = 1, ∀n ≥ 1

In summary, 1− µ(B(π/2 + ε)) ≤ e−ε
2n/2
√
π/8. �

Theorem 11.5 implies a corresponding statement for Lipschitz functions. That is, Lipschitz
functions on high-dimensional spheres are typically close to their average value.

For any x = (x1, . . . , xn) ∈ Rn, we denote ‖x‖ := (x2
1 + · · ·+ x2

n)1/2.

Theorem 11.6 (Concentration of measure, Lipschitz function form)). Let f : Sn+1 →
R. Suppose that for all x, y ∈ Sn+1, |f(x)− f(y)| ≤ ‖x− y‖, so that f is 1-Lipschitz. Let µ
denote normalized Haar measure on Sn+1. Then for all ε > 0,

µ

(
x ∈ Sn+1 :

∣∣∣∣f(x)−
∫
Sn+1

f(y)dµ(y)

∣∣∣∣ ≥ ε

)
≤
√
π

2
e−nε

2/4.
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Proof. Let m ∈ R such that µ(x ∈ Sn+1 : f(x) ≤ m) ≥ 1/2 and µ(x ∈ Sn+1 : f(x) ≥ m) ≥
1/2. Let C := {x ∈ Sn+1 : f(x) ≤ m}. Then x ∈ Cε if and only if ∃ y ∈ C with ‖x− y‖2 ≤ ε.
Since f is 1-Lipschitz, |f(x)− f(y)| ≤ ε, so that f(x) ≤ m+ ε. Taking the contrapositive,

{x ∈ Sn+1 : f(x) > m+ ε} ⊆ Sn+1 r Aε

So, from Thm. 11.5, since µ(C) ≥ 1/2, we have

µ
(
x ∈ Sn+1 : f(x) > m+ ε

)
≤
√
π/8e−nε

2/2.

Similarly, µ (x ∈ Sn+1 : f(x) < m− ε) ≤
√
π/8e−nε

2/2. In conclusion,

µ
(
x ∈ Sn+1 : |f(x)−m| > ε

)
≤ 2
√
π/8e−nε

2/2. (∗)

It remains to replace m with
∫
Sn+1 f(y)dµ(y). Consider µ× µ on Sn+1 × Sn+1. Observe

(µ× µ)
(
(x, y) ∈ Sn+1 × Sn+1 : |f(x)− f(y)| ≥ ε

)
≤ (µ× µ) ({|f(x)−m| ≥ ε/2} ∪ {|f(y)−m| ≥ ε/2})

≤ 2µ(|f(x)−m| ≥ ε/2) ≤ 4
√
π/8e−nε

2/2 , from (∗)

Let λ > 0. Then from Theorem 11.5, if λ2 := n/4,∫
Sn+1×Sn+1

eλ
2(f(x)−f(y))2dµ(x)dµ(y)

=

∫ ∞
0

2λ2teλ
2t2(µ× µ)

(
(x, y) ∈ Sn+1 × Sn+1 : |f(x)− f(y)| ≥ t

)
dt

≤ 4
√
π/8

∫ ∞
0

λ2teλ
2t2e−nt

2/2dt =
√
π/8

∫ ∞
0

tne−nt
2/4dt = 2

√
π/8 =

√
π/2.

So, for this λ, Jensen’s inequality in y implies that√
π/2 ≥

∫
Sn+1×Sn+1

eλ
2(f(x)−f(y))2dµ(x)dµ(y) ≥

∫
Sn+1

eλ
2(f(x)−

∫
Sn+1 f(y)dµ(y))2dµ(x).

Finally, by Chebyshev’s inequality,

µ(x ∈ Sn+1 : |f(x)−
∫
Sn+1

fdµ| ≥ ε) = µ(x ∈ Sn+1 : eλ
2|f(x)−

∫
Sn+1 f(y)dµ(y)|2 ≥ eλ

2ε2)

≤ e−λ
2ε2
∫
Sn+1

eλ
2|f(x)−

∫
Sn+1 f(y)dµ(y)|2dµ(x) ≤

√
π/2e−λ

2ε2 .

�

Theorem 11.7. (Spheres and Gaussians, Strong Version) Let γn be the standard
Gaussian measure on Rn, and let A ⊆ Rn be a Borel set. Let σN√

N
denote the normalized

Haar measure on
√
N · SN . Let PN+1,n (for N ≥ n) be the standard linear projection from

RN+1 onto Rn, i.e. PN+1,n(x1, . . . , xN+1) = (x1, . . . , xn). Then

lim
N→∞

σN√
N

(P−1
N+1,n(A) ∩ (

√
N · SN)) = γn(A)
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Proof. Let {gi} be iid standard Gaussian random variables, and defineR2
N := g2

1+· · ·+g2
N . By

rotation invariance,
√
N

RN+1
(g1, . . . , gN+1) has the same distribution as σN√

N
. So, by projecting

both sides,
√
N

RN+1
(g1, . . . , gn) has the same distribution as PN+1,n(σN√

N
) = σN√

N
(P−1

N+1,n(·)) (for

N ≥ n). In the previous sentence, we calculated both mentioned measures as pushforward
measures, under the map PN+1,n : RN+1 → Rn.
R2
N/N → 1 a.s. by the Strong Law of Large Numbers, giving a weak convergence result.

However, we need to be more precise. Note that R2
n, R

2
N+1 − R2

n and (g1, . . . , gn)/Rn are
independent of each other. The first two are independent by definition, and the third is
independent from the others by, say, invoking polar coordinates. (The third term is the
“angular” part of the Gaussian vector, and the first is the “radial” part.) Therefore, R2

n/R
2
N+1

is independent of (g1, . . . , gn)/Rn.
Now, write R2

n/R
2
N+1 = 1/(1 + (g2

n+1 + · · · + g2
N+1)/(g2

1 + · · · + g2
n)) and observe that the

ratio of gi’s is a ratio of two independent chi squared distributions. A computation then
shows that R2

n/R
2
N+1 has beta distribution with parameters n/2 and (N + 1 − n)/2. The

corresponding distribution function is therefore

Γ
(
N+1

2

)
Γ
(
n
2

)
Γ
(
N−n+1

2

)xn2−1(1− x)
N−n+1

2
−1

Combining our results and using the definition of the pushforward, we have

σN√
N

(P−1
N+1,n(A) ∩ (

√
N · SN)) = P(PN+1,n(σN√

N
) ∈ A)

= P

( √
N

RN+1

(g1, . . . , gn) ∈ A

)
= P

((
N

R2
n

R2
N+1

)1/2

· 1

Rn

(g1, . . . , gn) ∈ A

)

=
Γ
(
N+1

2

)
Γ
(
n
2

)
Γ
(
N−n+1

2

) ∫
Sn−1

∫ 1

0

1A(
√
Ntx)t

n
2
−1(1− t)

N−n+1
2
−1dtdσn−1(x)

=
Γ
(
N+1

2

)
Γ
(
n
2

)
Γ
(
N−n+1

2

) 2

Nn/2

∫
Sn−1

∫ √N
0

1A(ux)un−1

(
1− u2

N

)N−n+1
2
−1

dudσn−1(x)

In the last line we used the change of variables u =
√
Nt. Applying the Dominated Conver-

gence Theorem and letting N →∞, the last quantity converges to

1

2
n
2
−1Γ

(
n
2

) ∫
Sn−1

∫ ∞
0

1A(ux)un−1e−u
2/2dudσn−1(x)

which is γn(A) in polar coordinates, as desired. (We used the formula Γ(n + 1) = nΓ(n) to
get the correct constant in front of the integral.) �

We can now verify Gaussian isoperimetry via Thms. 11.7 and 11.4.

Theorem 11.8. (Gaussian Isoperimetric inequality) For A ⊆ Rn define dγn(x) :=

e−‖x‖
2
2/2dx/(2π)n/2. Define γ(∂A) := lim infε→0+(γ(Aε)− γ(A))/ε. Then among all sets with

the same (Gaussian) volume, one with minimal (Gaussian) boundary measure is the half
space.
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Proof. [Led96] Define Φ(t) := 1√
2π

∫ t
−∞ e

−x2/2dx, t ∈ R. We may assume that γn(A) = Φ(a)

for some a ∈ R. It suffices to show that

γn(Ar) ≥ Φ(a+ r)

That is, we want Φ−1(γn(Ar)) ≥ Φ−1(γn(A))+r. Now, let b ∈ R, b < a. Since Φ(a) = γn(A),
we have

γn(A) = Φ(a) > Φ(b) = γ1((−∞, b])
So, for N large enough (N ≥ n), Thm. 11.7 gives

σN√
N

(P−1
N+1,n(A) ∩ (

√
N)SN) > σN√

N
(P−1

N+1,1((−∞, b]) ∩ (
√
N)SN) (∗)

Note that P−1
N+1,n(Ar) ∩ (

√
N)SN ⊇ (P−1

N+1,n(A) ∩ (
√
N)SN)r, where the subscript on the

left denotes a neighborhood in Rn, and the subscript on the right denotes a neighborhood
on (
√
N)SN with respect to geodesic distance. This set containment follows since the map

P−1
n+1,n increases distances. Note also that P−1

N+1,1((−∞, b]) ∩ (
√
N)SN is a geodesic ball on

(
√
N)SN . This gives us two things. First, we can apply the spherical isoperimetric inequality.

Second, we have (P−1
N+1,1((−∞, b]) ∩ (

√
N)SN)r = P−1

N+1,1((−∞, b+ r(N)]), where

r(N) = −
√
N cos(cos−1(b/

√
N) + r/

√
N) + b, b < 0

with a similar equality for b > 0. In either case, the cosine addition formula shows that
limN→∞ r(N) = r. Combining all of these observations, we have

σN√
N

(P−1
N+1,n(Ar) ∩ (

√
N)SN)

≥ σN√
N

((P−1
N+1,n(A) ∩ (

√
N)SN)r) , by set containment

≥ σN√
N

((P−1
N+1,n((−∞, b]) ∩ (

√
N)SN)r) , by Thm. 11.4, and (∗)

= σN√
N

(P−1
N+1,n((−∞, b+ r(N)]) ∩ (

√
N)SN)

So, letting N →∞ and applying Thm. 11.7, we get

γn(Ar) ≥ Φ(b+ r)

And since b < a is arbitrary, we get γn(Ar) ≥ Φ(a+ r) as desired. �

Proof. [Led96] Instead of using the isoperimetric inequality on the sphere, we argue more
directly, as in Thm. 11.3, and we use Brunn-Minkowski (for Gaussian space, Thm. 11.9). Let
λ ∈ (0, 1) and let B ⊆ Rn be the Euclidean ball with radius r/(1−λ), so B = (r/(1−λ))Bn

2 .
From Gaussian Brunn-Minkowski (Thm. 11.9) we have

Φ−1(γn(λA)r) = Φ−1(γn(λA+ rBn
2 )) = Φ−1(γn(λA+ (1− λ)B))

≥ λΦ−1(γn(A)) + (1− λ)Φ−1(γn(B))

= λΦ−1(γn(A)) + (1− λ)ε(λ, r)Φ−1(γ1(−∞, r/(1− λ)])

= λΦ−1(γn(A)) + ε(λ, r)r

where ε(λ, r)→ 1 as λ→ 1, for fixed r. So, letting λ→ 1 gives Φ−1(γn(Ar)) ≥ Φ−1(γn(A))+
r, as desired. �
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Proof. [Bob97] We begin with a functional form of the isoperimetric inequality. We prove
this via a “two-point” inequality, which is leveraged to the whole Gaussian space, via the
central limit theorem. With Φ as above, and φ(t) := 1√

2π
e−t

2/2, define I := φ ◦ Φ−1. We
want to prove

γ(∂A) ≥ I(γ(A)) (∗)
This inequality is equivalent to γ(Ar) ≥ Φ(Φ−1(γ(A)) + r). To see this, differentiate the
latter inequality to get (∗). Conversely, if γ(∂A) ≥ I(γ(A)), for all A, we can conclude that
γ(Ar) ≥ Φ(Φ−1(γ(A))+ r)−ε, for all small ε > 0, with ε independent of A, but with r small
and dependent on A. Now, let p ∈ [0, 1], r ∈ R, and consider Rr(p) := Φ(Φ−1(p) + r). Note
that Rr1+r2(p) = Rr1(Rr2(p)) and Ar1+r2 = (Ar1)r2 . Thus, we can improve the inequality to
γ(Ar) ≥ Φ(Φ−1(γ(A)) + r) − ε with r, ε both independent of A, since r small implies (via
addition), the same inequality for r large. Letting ε→ 0 then gives our result.

Now, we will deduce (∗) from the following functional inequality

I(

∫
fdγ) ≤

∫ √
I(f)2 + |∇f |2dγ (∗∗)

where f : Rn → [0, 1]. Surprisingly, we can deduce (∗∗) from the following inequality (which
we will not prove)

I

(
a+ b

2

)
≤ 1

2

√
(I(a))2 +

∣∣∣∣a− b2

∣∣∣∣2 +
1

2

√
(I(b))2 +

∣∣∣∣a− b2

∣∣∣∣2
where 0 ≤ a, b ≤ 1. For f : {−1, 1} → [0, 1], write f(−1) = a and f(1) = b, so that we
re-write this inequality as

I(Ef) ≤ E

√
(I(f))2 + |∇f |2 (†)

Here the expected value is taken with respect to the Bernoulli measure µ := (1/2)δ−1 +
(1/2)δ1, and |∇f | = |f(1)− f(−1)| /2. To get (∗∗) from (†), we apply the Central Limit
Theorem.

We first show that (†) tensorizes. That is, (†) holds for f : {−1, 1}n → [0, 1] with measure
µn on {−1, 1}n, and |∇f(x)|2 := 1

4

∑n
j=1 |f(x)− f(sj(x))|2, with sj(x) := (x1, . . . , xj−1,−xj, xj+1, . . . , xn).

Let x ∈ {−1, 1}n, and now let f : {−1, 1}n+1 → [0, 1]. Let f0(x) := f(x,−1), f1(x) :=
f(x, 1), p0 := µ({−1}), p1 := µ({1}), a0 :=

∫
f0dµ

n, a1 :=
∫
f1dµ

n. Then
∫
fdµn+1 =

p0a0 + p1a1. Also,

|∇f(x,−1)|2 = |∇f0(x)|2 + (1/4) |f0(x)− f1(x)|2

|∇f(x, 1)|2 = |∇f1(x)|2 + (1/4) |f0(x)− f1(x)|2∫ √
I(f)2 + |∇f |2dµn+1 = p0

∫ √
I(f0)2 + |∇f0|2 +

1

4
|f0 − f1|2dµn

+ p1

∫ √
I(f1)2 + |∇f1|2 +

1

4
|f0 − f1|2dµn (‡)

By applying (the proof of) Jensen’s inequality twice, we have√
(

∫
u)2 + (

∫
v)2 ≤

∫ √
u2 + (

∫
v)2 ≤

∫ √
u2 + v2 (∗ ∗ ∗)
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Specifically, we use that φ(x, y) :=
√
x2 + y2 is convex in one argument, when the other

argument is fixed. Now, let `v(u) = au + b be a linear function such that `v(u) ≤ φ(u,
∫
v)

and `v(
∫
u) = φ(

∫
u,
∫
v). Then

φ(

∫
u,

∫
v) = `v(

∫
u) = a

∫
u+ b =

∫
`v(u) ≤

∫
φ(u,

∫
v)

Now, let `u(v) = av+b be a linear function such that `u(v) ≤ φ(u, v) and `u(
∫
v) = φ(u,

∫
v).

Then

φ(u,

∫
v) = `u(

∫
v) = a

∫
v + b =

∫
`u(v) ≤

∫
φ(u, v)

We now use (∗ ∗ ∗) twice, with u0 =
√
I(f0)2 + |∇f0|2, v = (f0 − f1)/2, and u1 =√

I(f1)2 + |∇f1|2. Then (‡) implies

∫ √
I(f)2 + |∇f |2dµn+1 ≥ p0

√
(

∫
u0dµn)2 + (

∫
vdµn)2

+ p1

√
(

∫
u1dµn)2 + (

∫
vdµn)2

By the inductive assumption of (†),
∫
u0dµ

n ≥ I(a0),
∫
u1dµ

n ≥ I(a1). By definition of v,∫
vdµn = (a0 − a1)/2. Therefore,∫ √

I(f)2 + |∇f |2dµn+1 ≥ p0

√
I(a0)2 + (1/4)(a0 − a1)2

+ p1

√
I(a1)2 + (1/4)(a0 − a1)2

By the n = 1 case of (†),

p0

√
I(a0)2 + (1/4)(a0 − a1)2 + p1

√
I(a1)2 + (1/4)(a0 − a1)2

≥ I(p0a0 + p1a1) = I(

∫
fdµn+1)

So, the inductive step is complete, and (†) is proven.
We now show how to get Gaussian isoperimetry from (†). Let f : Rn → [0, 1] be a smooth

function. Let x1, . . . , xk ∈ {−1, 1}n, and define fk(x1, . . . , xk) := f((x1 + · · ·+ xk)/
√
k). By

the Central Limit Theorem, as k →∞,∫
{−1,1}nk

fkdµ
nk →

∫
Rn
fdγn
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Also,

|∇fk(x1, . . . , xk)|2 =
1

4

n∑
i=1

k∑
j=1

|fk(x1, . . . , xk)− fk(x1, . . . , si(xj), . . . , xk)|2

=
1

4

n∑
i=1

k∑
j=1

∣∣∣f((x1 + · · ·+ xk)/
√
k)− f((x1 + · · ·+ si(xj) + · · ·+ xk)/

√
k)
∣∣∣2

= ‖∇f((x1 + · · ·+ xk)/
√
k)‖2

2 +O(1/
√
k)

Since f is smooth, the error O(1/
√
k) is uniform over all (x1, . . . , xk). So, using the Central

Limit Theorem again, as k →∞,∫
{−1,1}nk

√
I(fk)2 + |∇fk|2dµnk →

∫
Rn

√
I(f)2 + |∇f |2dγn

So, we have the analogue of (†) for the Gaussian measure. To finally get Gaussian
isoperimetry, let f approximate 1A for a set A, and note that I(0) = I(1) = 0. �

Theorem 11.9. (Gaussian Brunn-Minkowski, [Bor03]) As above, let Φ(t) := 1√
2π

∫ t
−∞ e

−x2/2dx,

let γ = γn be the standard Gaussian measure on Rn, let A,B ⊆ Rn be Borel sets, and let
λ ∈ (0, 1). Then

Φ−1(γn(λA+ (1− λ)B)) ≥ λΦ−1(γn(A)) + (1− λ)Φ−1(γn(B))

(Compare to Euclidean Brunn-Minkowski, Thm. 11.2.)

Proof. We use a method of heat flows, together with the maximum principle. Let u = Ttf
be a solution of the heat equation ∂u/∂t = 1

2
∆u. Suppose u has range [0, 1]. Note that

dΦ/dt = φ := e−t
2/2/
√

2π. Define U := Φ−1(u). Straightforward calculations show that

∂u

∂t
= φ(U)

∂U

∂t
, ∇u = Φ(U)∇U, ∆u = φ(U)(∇U − U |∇U |2)

∂U

∂t
=

1

2
∆U − 1

2
U |∇U |2 (∗)

Let A,B ⊆ Rn be compact subsets, and let ε ∈ (0, 1), δ ∈ (0, ε). Let F be a smooth
bump function adapted to an epsilon neighborhood of A. Let f := δ + (1 − ε)F , so that
δ ≤ f ≤ α := δ + 1− ε < 1. Similarly define g for B. Define

κ := max{Φ(λΦ−1(α) + (1− λ)Φ−1(δ)),Φ(λΦ−1(δ) + (1− λ)Φ−1(α))}

Crucially, κ→ 0 as δ → 0 (since Φ−1(0) = −∞). Now, let h such that κ ≤ h ≤ α, such that
h = α on λAε + (1 − λ)Bε and h = κ off an ε-neighborhood of λAε + (1 − λ)Bε. Observe
that the following inequality holds pointwise for x, y ∈ Rn.

Φ−1(h(λx+ (1− λ)y)) ≥ λΦ−1(f(x)) + (1− λ)Φ−1(g(y)) (∗∗)

This inequality is clear for x ∈ A, y ∈ B and for x /∈ A, y /∈ B, since we reduce to α ≥ α
or κ ≥ δ. For x ∈ A, y /∈ B, the inequality holds by definition of κ. (And similarly for
x /∈ A, y ∈ B).
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Now, by letting δ → 0 and then ε → 0 in the following inequality, we will complete the
theorem.

Φ−1(

∫
hdγ) ≥ λΦ−1(

∫
fdγ) + (1− λ)Φ−1(

∫
gdγ) (‡)

We prove (‡) via the more general inequality

Φ−1(Tth(λx+ (1− λ)y)) ≥ λΦ−1(Ttf(x)) + (1− λ)Φ−1(Ttg(y)) (♣)

where Tt is the heat semigroup operator.
Surprisingly, the inequality (♣) is almost a symbolic exercise. Define

C(t, x, y) := Φ−1(Tth(λx+ (1− λ)y))− λΦ−1(Ttf(x)) + (1− λ)Φ−1(Ttg(y))

Then (∗∗) expresses C(0, x, y) ≥ 0 and our desired inequality (‡) corresponds to C(1, 0, 0) ≥
0. Moreover, by construction, C vanishes as |x| , |y| → ∞. Since we know C(0, x, y) ≥ 0,
in order to prove (♣) it suffices to show via a maximum principle that C(t, x, y) ≥ 0 for all
x, y ∈ Rn, t ≥ 0.

Let ξ := (t, x), η := (t, y) and ζ := (t, λx+ (1− λy)). Then

∇xC = λ[(∇(Φ−1(Tth)))(ζ)− (∇(Φ−1(Ttf)))(ξ)]

∇yC = (1− λ)[(∇(Φ−1(Tth)))(ζ)− (∇(Φ−1(Ttg)))(η)]

∆xC = λ2(∆(Φ−1(Tth)))(ζ)− λ(∆Φ−1(Ttf))(ξ)

∆yC = (1− λ)2(∆(Φ−1(Tth)))(ζ)− (1− λ)(∆Φ−1(Ttg))(η)

Also, ∑
1≤i≤n

∂2C

∂xi∂yi
= λ(1− λ)(∆(Φ−1(Tth)))(ζ)

Let E := 1
2

[
∆x + 2

∑
1≤i≤n

∂2

∂xi∂yi
+ ∆y

]
. Then, using (∗),

EC =
1

2

[
(∆(Φ−1(Tth)))(ζ)− λ(∆(Φ−1(Ttf)))(ξ)− (1− λ)(∆(Φ−1(Ttg)))(η)

]
=

∂

∂t
(Φ−1(Tth))(ζ) +

1

2
(Φ−1(Tth))(ζ)

∣∣(∇(Φ−1(Tth)))(ζ)
∣∣2

− λ ∂
∂t

(Φ−1(Ttf))(ξ)− λ

2
(Φ−1(Ttf))(ξ)

∣∣(∇(Φ−1(Ttf)))(ξ)
∣∣2

− (1− λ)
∂

∂t
(Φ−1(Ttg))(η)− 1− λ

2
(Φ−1(Ttg))(η)

∣∣(∇(Φ−1(Ttg)))(η)
∣∣2

=:
∂C

∂t
+ Ψ(t, x, y)

Now, write∣∣(∇(Φ−1(Ttf)))(ξ)
∣∣2 =

∣∣(∇(Φ−1(Tth)))(ζ)
∣∣2

+
∑

1≤i≤n

[
∂Φ−1(Ttf)

∂xi
(ξ) +

∂Φ−1(Tth)

∂xi
(ζ)

] [
∂Φ−1(Ttf)

∂xi
(ξ)− ∂Φ−1(Tth)

∂xi
(ζ)

]
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∣∣(∇(Φ−1(Ttg)))(η)
∣∣2 =

∣∣(∇(Φ−1(Tth)))(ζ)
∣∣2

+
∑

1≤i≤n

[
∂Φ−1(Ttg)

∂xi
(η) +

∂Φ−1(Tth)

∂xi
(ζ)

] [
∂Φ−1(Ttg)

∂xi
(η)− ∂Φ−1(Tth)

∂xi
(ζ)

]
Then by these equalities and the definition of Ψ, we can write Ψ(t, x, y) =: 1

2
|(∇(Φ−1(Tth)))(ζ)|2C−

b(t, x, y) · ∇(x,y)C. In summary,

EC + b(t, x, y) · ∇(x,y)C =
∂C

∂t
+

1

2

∣∣(∇(Φ−1(Tth)))(ζ)
∣∣2C (∗ ∗ ∗)

Note that E is elliptic, since it can be written as E = 1
2
(∇x,∇y)

TA(∇x,∇y), where A is a

block matrix of the form

(
id id
id id

)
, and each id is an n× n identity matrix.

We now argue by contradiction. By the definitions of f, g, h, we know that inf0≤t≤T C(t, x, y)
is non-negative as |x| + |y| → ∞. We make the contrary assumption that C(t, x, y) < 0 for
some (t, x, y) ∈ [0, T ]×Rn×Rn. Then there exists ε > 0 such that εt+C(t, x, y) has a strictly
negative minimum in [0, T ] × Rn × Rn. Suppose this minimum occurs at P = (t0, x0, y0)
with t0 > 0. Note that t0 > 0, since t0 = 0 cannot occur, since (♣) reduces to (∗∗) at t = 0.
Then, using that P is a minimum and E is an elliptic operator,

C(P ) < 0,
∂C

∂t
(P ) + ε ≤ 0, ∇(x,y)C(P ) = 0, EC(P ) ≥ 0

However, these inequalities contradict (∗ ∗ ∗). We conclude that C(t, x, y) ≥ 0, so (♣) holds,
as desired. �

We begin with Gross’ Log-Sobolev inequality. Let µ be a probability measure on some
measure space Ω. Given a non-negative measurable function f on Ω with

∫
f log(1+f) <∞,

define the entropy of f as

Entµ(f) :=

∫
f log fdµ− (

∫
fdµ) · log(

∫
fdµ) =

∫
f log

(
f∫
fdµ

)
dµ

Note that Entµ(f) ≥ 0 by Jensen’s inequality (since g(x) = x log x, x ≥ 0 is convex). Also, a
short calculation shows that Entµ(λf) = λEntµ(f), i.e. the entropy is homogeneous of order
1.

Theorem 11.10. (Log-Sobolev Inequality, Gross, [Led01]) Let f : Rn → R be smooth.

As usual, let γ := (1/(2π)n/2)e−‖x‖
2
2/2dx be the standard Gaussian measure on Rn, and let

|∇f | := ‖∇f‖2. Then

Entγ(f
2) ≤ 2

∫
|∇f |2 dγ

Proof. Recall that that the operator L := ∆ − x · ∇ on Rn has the associated semigroup
{Pt}t≥0 with representation

Ptf(x) =

∫
f(e−tx+ (1− e−2t)1/2y)dγ(y), t ≥ 0, x ∈ Rn

This semigroup is known as the Ornstein-Uhlenbeck semigroup. Now, let f be smooth
and non-negative with ε ≤ f ≤ 1/ε for some ε > 0. Via abstract semigroup theory or
direct verification with the above formula for Pt, we have: Pt = etL, (∂/∂t)Ptf = LPtf ,
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P0f = f , P∞f := limt→∞ Ptf =
∫
fdγ. Also, recall the Gaussian integration by parts

formula
∫
f(−Lg)dγ =

∫
∇f · ∇gdγ, via real variable integration by parts.

Lastly, we need the formula
∫
Ptf(x)dγ(x) =

∫
fdγ. This follows immediately from the

fact that, ifX, Y are independent standard Gaussians, then αX+
√

1− α2Y is also a standard
Gaussian. Thus,∫

Ptf(x)dγ(x) = Ef(e−tX +
√

1− e−2tY ) = Ef(X ′) =

∫
fdγ

where X ′ is another standard Gaussian. Alternately,

∂

∂t

∫
Ptf =

∫
∂

∂t
Ptf =

∫
LPtf = −

∫
Ptf · (∇1) = 0

In either case, we are ready to begin the proof.

Entγ(f) =

∫
f log f − (

∫
f) log(

∫
f)

=

∫
(P0f logP0f)− P∞f logP∞f

=

∫
Rn

(−
∫ ∞

0

∂

∂t
(Pt logPt)dt)dγ , integrating by parts

= −
∫ ∞

0

∫
Rn

∂

∂t
Pt logPtdγdt

= −
∫ ∞

0

(∫
LPtf logPtfdγ +

∫
LPtfdγ

)
dt , chain rule

= −
∫ ∞

0

(
−
∫
∇Ptf · ∇ logPtf)−

∫
∇Ptf · (∇1)

)
dt , L int. by parts

=

∫ ∞
0

∫
|∇Ptf |2

Ptf
dγdt

Now, from the formula for Pt, we see that ∇Ptf = e−tPt(∇f). So, using the formula for Pt
and Minkowski’s inequality we have |∇Ptf | ≤ e−tPt(|∇f |). Note that we may apply Cauchy-

Schwarz to Pt(fg)(x) for fixed x on L2(γ), so that Pt(fg) ≤
√
Pt(f 2)

√
Pt(g2). Therefore

|∇Ptf | ≤ e−tPt(|∇f |) = e−tPt(|∇f |
√
f/
√
f) ≤ e−t

√
Ptf
√
Pt(|∇f 2| /f)

that is,

|∇Ptf |2

Ptf
≤ e−2tPt

(
|∇f |2

f

)
So, combining this with our above equality for entropy gives

Entγ(f) ≤
∫ ∞

0

e−2t

∫
Pt

(
|∇f |2

f

)
dγdt =

1

2

∫
|∇f |2

f
dγ

using that
∫
Ptgdγ =

∫
gdγ, and then integrating in t. Letting f = g2 and applying the

chain rule completes the proof. �
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Remark 11.11. The above applies equally well to measures dµ = e−Udx where HessU(x) ≥
cId. The result is then

Entµ(f 2) ≤ 2

c

∫
|∇f |2 dµ
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12. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

N = {1, 2, . . .} denotes the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers

Q = {a/b : a, b,∈ Z, b 6= 0} denotes the set of rational numbers

R denotes the set of real numbers

C = {a+ b
√
−1: a, b ∈ R} denotes the set of complex numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := Ω r A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

A∆B := (ArB) ∪ (B r A)

P denotes a probability law on Ω

Let n ≥ m ≥ 0 be integers. We define(
n

m

)
:=

n!

(n−m)!m!
=
n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · (2)(1)
.

Let a1, . . . , an be real numbers. Let n be a positive integer.

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

The min of a set of nonnegative real numbers is the smallest element of that set. We also
define min(∅) :=∞.
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Let A ⊆ R.

supA denotes the supremum of A, i.e. the least upper bound of A.

inf A denotes the infimum of A, i.e. the greatest lower bound of A.

Let X : Ω→ R be a random variable on a probability space (Ω,F , µ).

E(X) denotes the expected value of X

‖X‖p := (E |X|p)1/p, denotes the Lp-norm of X when 1 ≤ p <∞
‖X‖∞ := inf{c > 0: P(|X| ≤ c) = 1}, denotes the L∞-norm of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

Let A ⊆ Ω.

E(X|A) := E(X1A)/P(A) denotes the expected value of X conditioned on the event A.

1A : Ω→ {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A
0 , otherwise.

Let 〈·, ·〉 : Rn × Rn → R be the standard inner product on Rn, so that for any x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we have 〈x, y〉 :=

∑n
i=1 xiyi. We also denote ‖x‖ :=

(
∑n

i=1 x
2
i )

1/2 as the standard norm on Rn.
Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a

probability law on Ω. Let x, t ∈ R.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function of X.

MX(t) = EetX denotes the Moment Generating Function of X at t ∈ R

Let g, h : R→ R. Let t ∈ R.

(g ∗ h)(t) =

∫ ∞
−∞

g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

Let f, g : R→ C. We use the notation f(t) = o(g(t)), ∀ t ∈ R to denote limt→∞
∣∣f(t)
g(t)

∣∣ = 0.

We use the notation f(t) = O(g(t)) to denote that ∃ c > 0 such that |f(t)| ≤ c |g(t)| for all
t ∈ R. We write f(t) = Ω(g(t)) when ∃ c > 0 such that |f(t)| ≥ c |g(t)| for all t ∈ R. We
write f(t) = Θ(g(t)) when f(t) = O(g(t)) and g(t) = O(f(t)).
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[Mat00] J. Matoušek, On approximate geometric k-clustering, Discrete Comput. Geom. 24 (2000), no. 1,
61–84. MR 1765234 (2001e:52036)

[MMR18] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn, Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering, CoRR abs/1811.03195 (2018).

[Sch90] Robert E. Schapire, The strength of weak learnability, Machine Learning 5 (1990), no. 2, 197–227.

USC Mathematics, Los Angeles, CA
E-mail address: stevenmheilman@gmail.com

102


	1. Introduction
	2. A General Supervised Learning Problem
	2.1. The Perceptron Algorithm
	2.2. Embeddings and the ``Kernel Trick''
	2.3. Optional: Proof of Mercer's Theorem

	3. Probably Approximately Correct (PAC) Learning
	3.1. Learning Boolean Conjunctions
	3.2. Learning DNF Formulas
	3.3. Boosting
	3.4. Occam's Razor
	3.5. Additional Comments

	4. Vapnis-Chervonenkis (VC) Theory
	4.1. Applications of the Fundamental Theorem

	5. Some Concentration of Measure
	5.1. Concentration for Independent Sums
	5.2. Concentration for Lipschitz Functions
	5.3. Additional Comments

	6. Empirical Risk Minimization (ERM) and Concentration
	6.1. Gaussian Processes
	6.2. Sub-Gaussian Processes
	6.3. General Empirical Processes
	6.4. Additional Comments

	7. Concentration of Empirical Processes
	8. Deep Learning
	9. Appendix: Basics of Complexity Theory
	10. Appendix: Some Functional Analysis
	11. Appendix: Isoperimetric Inequalities
	12. Appendix: Notation
	References

