The Establishment of
Sampling as a Scientific
Principle—A Striking
Case of Multiple
Discovery
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During the period 1928-1949, several engineers
contributed to the establishment of a sampling
principle. They did this virtually independently
of each other in the context of communications
theory and practice.

Five names stand out as being the main players
in this drama: H. Nyquist, who laid the foundations
for the minimal sampling rate; V. A. Kotel'nikov,
C. E. Shannon, and I. Someya, whose treatment
of the sampling principle was mathematical; and
H. Raabe, who derived the minimal sampling rate
and built hardware to reconstruct signals from
samples taken at that rate. Their work is described
below.

As Shannon recognized, the mathematical set-
ting already existed. In fact, it was part of a
tradition that can now be traced back to Cauchy,
but its significance for application was simply not
realized until Shannon’s time.

Our notation is described in context, or else com-
pletely standard. For background and references
to original work, see [1] and [3].

The Sampling Principle
I. Signal functions having finite energy and
frequency content confined to a bounded set
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(e.g., [-mtw, W], w > 0, the condition of band-
limitation) are uniquely determined by countably
many of their values, or samples, taken at a fast
enough rate.

II. Such a function can be represented, usually
in the form of a series, in terms of these samples.

The Sampling Principle asserts that all the
energy, indeed all the information, in this type of
function is contained in only countably many sam-
ples. Seen in this way, the principle is one of
data compression and is basic in modern digital
communications.

The minimum sampling rate is w sam-
ples/second, twice the highest frequency
component (measured in radians/second). The
rate is usually called the Nyquist sampling rate.

The Sampling Principle has found widespread
applications in modern science and technology,
where it has been greatly extended and generalized.

When an idea comes to fruition at the hands of
two or more people independently and at about
the same time, historians call it multiple discovery,
or multiple invention. Here, discovery seems the
more appropriate choice. The Sampling Principle
furnishes an example; we shall see that it grew
out of the need to respond to the limitations set
by contemporary technology, limitations which
had to be understood and overcome, and that
by the early twentieth century motives such as
these were being felt worldwide. This may help
to answer the question: Why was the Sampling
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Principle the subject of multiple discovery, spread
over three continents?

Before going on to explore this question, we
shall give a proof of the Sampling Principle in the
language of today. This proof is a prototype of
the elegant treatment, in terms of Hilbert spaces
and their bases, that can be given to many general
sampling theorems.

We have the standard notion of Hilbert space as
a complete inner product space, the inner product
being denoted here by (-, -) and the norm derived
from the inner product denoted by || - ||.

A sequence (@,) in a Hilbert space H is an
orthonormal basis for H if it satisfies both the
orthonormality property

<(pmy (pn> = 6mn|

and the property that whenever f € H, the
representation

m,nelz,

f= Z Cn®Pn
nez
holds, with convergence in norm and with unique
coefficients ¢, = (f, ).

To give the Sampling Principle a mathematical
description, two Hilbert spaces are involved. One
is L?(—-mtw,tw) (by a slight abuse of notation
this symbol will mean those members of L%(R)
that are null outside [ —mtw, TTw]); the other is the
Paley-Wiener space, denoted by PW, of continuous
and square integrable functions on R whose Fourier
transform is null outside [—mw, W], the norm
being that of L?(R). Here the Fourier transform is
defined by

1 —iwt
(FF (@) = J[Rf(t)e dt,

the integral taken in the L2-sense.
It follows from the Plancherel theory of the L?
Fourier transform that we can understand f € PW

to be of the form
e

(1) f(t) = @ (w)e dw

-TTw
for some @ € L?(—1tw, tw), and furthermore that
the two Hilbert spaces are isometrically isomorphic
under the transformation ‘F. In particular, an
orthonormal basis for one space goes over into an
orthonormal basis for the other.
Consider the orthonormal system

(2) (ZTrW)—l/Z e—iwn/w
the standard trigonometrical basis for L?(—1tw,
™W).

First, since a basis is, in particular, a complete
set, we have

lw| <1tW, (n € ?2),

mw
I @ (w)e Y dw =0 for every n

—TTw

implies that @ is the null element of L2 (—1tw, TTw).

By (1) this means that f(n/w) = 0 for every n
implies that @ is null. But if ¢ is null, so is f, and
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we have shown that {n/w} is a set of uniqueness
for PW. This accounts for part L.

Second, for Paley-Wiener functions, the classical
sampling series is:

3) Flt) = Zf<n> sinrr(wt—n).

= \w m(wt —n)

To prove this we find, after a little calculation,
that the (inverse) Fourier transform of the basis
elements (2) (remembering that they are null outside
[-mtw, Tw]) are proportional to the expansion
functions in (3), and a little more calculation shows
that the coefficients are indeed samples of f.
Thus the series (3) is an orthonormal expansion
for f € PW,and the corresponding Parseval relation

is clearly
2
n
r()]

1

4) IFIIZ, = = >
t w nez

Convergence in (3) is in norm, but pointwise and

uniform convergence can be obtained because the

Cauchy-Schwarz inequality applies to (3), thanks

to (4). This accounts for part II.

The Challenges of Communications
Engineering

The answer to our question about multiple dis-
covery must surely lie in the development of
communications technology and theory during the
interwar period.

Bandwidth limitation and its effect on the
communication rate had been felt for the first
time when telegraphy over submarine cables was
attempted. The transmission speed was found to
be severely limited because the cable acted like
a capacitor, which had to charge and discharge
before the signal could be received at the far end.
This was experimentally shown by Faraday, in
1854. The delay reduced the transmission speed
dramatically: the ninety-word message sent in
1858 across the Atlantic from Queen Victoria to
President Buchanan took sixty-seven minutes to
transmit. Rates of one or two words per minute
were common.

Initially, this limitation was not fully understood.
The Atlantic cable failed after only a few weeks,
damaged by the high voltages used. Edward Orange
Whitehouse, chief electrician with the Atlantic
Telegraph Company, who had been convinced that
only high voltages could deliver information across
the Atlantic, was dismissed.

Kelvin’s law of squares shed some light on the
problem. It states that the maximum operating
speed is proportional to 1/(RC¥?), where R and C
are the cable’s resistance and shunt capacitance per
unit length and ¥ is its length. Since a simple RC
circuit with resistance R¥ and shunt capacitance C¥
has bandwidth w, = 1/(RC¥?), Kelvin’s law states
that operating speed is proportional to bandwidth.
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The underlying theory was developed in 1854
in a correspondence between Stokes and Kelvin [4].
Assuming no inductance, Ohm’s law is
ov .
ox Ri,
where, as usual, V denotes the potential and i the
current. A segment of unit length of cable at x ac-
cumulates charge at the rate —0i/0x. The potential
therefore increases at the rate —(1/C)0i/0ox, and
SO
ov._ ai
ot ox’
Eliminating i between these two equations, Kelvin
obtained
oV 0%V
®) Re ot ox?’
which is similar to Fourier’s equation for the
propagation of heat. Kelvin knew Fourier’s work
very well and immediately recognized that it was
“perfectly adapted” to the problem of the submarine
cable. We outline two of the contributions found
in the Kelvin-Stokes correspondence. First, the
elementary solution of (5) is

V(x,t) = e"REW'*x gin[2nt — (RCn)'/%x]

and shows that harmonic terms of different fre-
quencies are propagated at different velocities. The
consequence is that no definite velocity of trans-
mission is to be expected for more general signals,
namely, linear combinations of such harmonic
terms.

The second result, and the most important for
us, is Kelvin’s law of squares. To obtain it, he
solved the diffusion equation for a unit step

1, t>=0,
V(O,t)={ 0, t<0

and then computed the electrical current using

ov ,

ax Ri.
Kelvin determined that the current would reach a
maximum after a certain time t,, which he found
by setting the derivative of the current to zero.

Kelvin's conclusion also follows from dimen-

sional analysis: t, can depend only on ¥, the length
of the cable, and the product RC, the only parame-
ter in the diffusion equation. The units into which
the product RC can be expressed are

unit of time
(unit of length)*’

It follows that RC{?/t, is invariant with respect to
changes in the units of length and time. This means
that it is a constant and so t, must be proportional
to RC¥?, the law of squares.

Kelvin would apply Fourier’s theory again in
1862, in a famous and controversial paper in
which he used the equation of heat propagation to
estimate the age of the Earth. It was in that paper
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that Kelvin referred to Fourier’s work as a “great
mathematical poem”.

Heaviside, who considered a more complex heat
propagation model and showed that the Earth
could be much older than Kelvin had predicted,
also improved Kelvin’s telegraphy line model. He
completed the model in 1887 by introducing series
inductance. This decisive contribution allowed him
to show that by carefully adding inductance to a
cable its bandwidth could be increased. In fact,
the attenuation of the cable could theoretically
be made constant, that is, independent of the
frequency.

Transmission speed was very important in
telegraphy and the need for improvements globally
felt. By 1896 there were about 160,000 nautical
miles of cable, laid at a cost of $1,200 per mile,
spread out all over the world, with London at
the center. Due to theoretical progress and better
instrumentation, the line between New York and
the Azores Islands was being operated at four
hundred words per minute in 1924.

Hartley and Nyquist made Kelvin’s law precise.
Between 1924 and 1928 they focused on abstract
models of the channel rather than the physical
properties of the cable. As aresult, they captured in
a precise way the interplay between transmission
speed and bandwidth.

Progress in wireless telegraphy was also be-
ing made. Marconi’s first transmissions across
the Atlantic date from 1901. In Germany, Braun
perfected the technology (and shared the 1909
Nobel Prize with Marconi). The discovery of the
vacuum tube brought enormous progress, and a
new form of bandwidth limitation was soon found:
“the crowding of the ether”, as Kotelnikov put it.
The wireless transmission of a signal required a
certain bandwidth. The natural question was: How
much bandwidth should be allocated to a certain
signal? Conversely, given a certain bandwidth, how
much information can be packed into it?

Telegraphy had exposed the effect of bandwidth
limitations on the speed of transmission, leading
to the results of Nyquist and Hartley. Telephony
was exposing other forms of bandwidth limitation
and raising new challenges.

Time-domain multiplexing had been used in
telegraphy in order to allow the cables to transmit
more than one signal simultaneously. The more
complex multiplexing problem for telephony led
Raabe in Germany to discover the minimum
sampling rate for a given signal bandwidth.

Wireless transmission and frequency-domain
multiplexing and the “crowding of the ether”
pressed the engineers for precise answers regarding
transmission rates, bandwidth, and the effect of
noise. Answers appeared in Russia, the United
States, and Japan by Kotel'nikov, Shannon, and
Someya, respectively.
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Shannon’s work not only marks the birth
of information theory, but it also represents
a bridge between developments that can be traced
back to telegraphy—Nyquist, Hartley, Kelvin—and
mathematics—Fourier analysis and interpolation.

H. Nyquist

By 1928 Nyquist had identified the fundamental
parameters that determine the rate at which
information can be transmitted in a telegraph.

Nyquist observed that in telegraphy, time is
divided into equal units. In each unit, the trans-
mitted information identifies one symbol among
m. He showed that the rate at which information
can be transmitted increases linearly with both the
number of symbols per second and the number of
bits per symbol, log, m. In 1928 Hartley reached
similar conclusions independently, referring to the
“considerable historical importance” of Kelvin’s RC
law.

Nyquist also clarified the connection between the
transmission speed in telegraphy and bandwidth.
This part of his work is closer in spirit to the
sampling principle and led Shannon to coin the
expression “Nyquist interval”. The reciprocal of
the Nyquist interval became known as the “Nyquist
rate”.

Nyquist considered the effect of transmitting
periodic signals f(t) and f(2t) through two chan-
nels and realized that the channel used to transmit
f(2t) would have to deal with frequencies twice
as large. He concluded that “frequency band is
directly proportional to speed” and determined the
proportionality constant by means of an argument
involving Fourier series.

Nyquist’s discoveries were motivated by concrete
practical problems, but his focusing on the essential,
abstract characteristics of telegraphy led him to
general conclusions of lasting significance.

H. Raabe

By 1939 Raabe had built a multiplexing system
for telephony, that is, a system to simultaneously
transmit several signals over the same transmission

line and recover each of them at the receiving end.

The system worked by sampling each input signal
in turn, at a certain fixed rate. The question that
Raabe had to address was: At what rate should
each signal be sampled?

In Raabe’s system, each signal is multiplied by
a square wave s(t) that determines the sampling
rate. He assumes that the input signal is periodic
and that it can be expanded in a Fourier series.
Multiplication of its components by the Fourier
series of the square wave led Raabe to the answer:
“distortionless transmission” is possible if the
sampling frequency is at least twice the highest
signal frequency.
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To reach this conclusion, Raabe starts by writing
the Fourier series of the square wave s(t), translated
to become an even function, as

(6) s(t) =c+ > ancos(nwit),
n=1

where c is a nonzero constant—essentially, the
average value of s(t). The multiplexed signal is
given by r(t) = s(t)f (t). The question is of course
whether f(t) can be recovered from r(t). To answer
this question, Raabe expands f(t) in a Fourier series.
Instead of multiplying this Fourier series by that of
s(t), Raabe invokes superposition and investigates
the multiplication of a single term of this Fourier
series (one sinusoid, therefore) by that of s(t). If
this sinusoid is written as cos(mw;t), where m is
a real number, the product becomes

r(t) = ccos(mwst)

+ % > anfcos[(n — m)wit] + cos[(n + m)wt]}.

n=1

Of the frequencies involved in this equation, mw;
is due to the input signal, and the remaining
frequencies, (n = m)w;, can be regarded as “noise
frequencies”. Raabe observes that if mw, is known
to fall below the smallest noise frequency, which is
(1 — m)w;, there will be no problem in separating
noise frequencies from signal frequencies. This
leads him to the condition for lossless recovery:
mw; < (1-m)ws,thatis, m < 1/2.In other words,
the input frequency, mw;, must be below one half
the sampling frequency.

Raabe also found that band-pass signals (band-
limited signals with no low-frequency terms) can
be sampled at a lower rate, the first time this
had been noted. These are important theoretical
contributions in a work that has a remarkably
strong practical character.

Raabe’s finding that there is aminimum sampling
frequency for low-pass and band-pass signals
that, in theory, allows distortionless transmission
is another instance of a theoretical discovery
prompted by practical needs; in this case, the
multiplexing problem.

V. A. Kotel'nikov, C. E. Shannon, and
l. Someya
These three engineers introduced the sampling
series into communications engineering indepen-
dently of each other; Kotel'nikov in 1933, Shannon
in 1949, and Someya also in 1949. Their proofs
differ, of course, and none of them is strictly rigor-
ous, but all are directly appealing to the intuition.
Some minor changes in the original notations have
been made.

Kotel'nikov’s hypotheses are that f € L' (R), f
satisfies Dirichlet’s conditions and is band-limited
to [—-tw, TTW].
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His proof is based on a Fourier inversion
principle for such functions, quoted from the
classical literature, to the effect that f satisfies (1)
where

(7) @(w) = J, f(t)e '™t dt.

Next he writes down the Fourier series for @, the
coefficients being (f(n/w)) from (1). This Fourier
series is now substituted into (1), and (3) results.

An interesting feature of the proof, not found
in the other two, is that Kotel'nikov recognizes the
presence of a converse to the sampling theorem,
that is, that if a function f is represented by a
series of the form (3), with (f(n/w)) replaced
by a numerical sequence (D,), then it must be
band-limited. He argues that, since every term
of the series is band-limited to [-tw, mw] (by a
special Fourier transform), the same must be true
of its sum.

Shannon works with what we have called
Paley-Wiener functions. An interesting feature
of Shannon’s argument, not found in the other two,
is that he shows (1/w)Z to be a set of uniqueness
for PW (this is Part I of the Sampling Principle).
He does this by following through a chain of
unique determinations: f is uniquely determined
by its Fourier transform, which in turn is uniquely
determined by its Fourier coefficients, which in
turn are uniquely determined by samples of f at
(scaled) integer time points. That is, f is uniquely
determined by its samples.

As for (3), Shannon argues that the sum is
band-limited, just as Kotel'nikov did. This sum
coincides with f at the sample points (a simple
calculation); therefore, by the uniqueness proved
in the first part, the sumis f.

Someya works with functions that he designates
as being merely “band-limited”, nothing more. His
proof is similar in outline to that of Shannon
but differs in detail; in fact, it is obscure and
unnecessarily lengthy, and it will not be feasible
to give a complete account of it here (see [2]
for an assessment of this proof). However, the
important fact remains that Someya’s contribution
is a completely independent introduction of the
sampling theorem in the engineering context.

Conclusion

We have asked a historical question, but history sel-
dom provides us with clear-cut answers. However,
the emergence of sampling in practice seems to be
closely connected to the development of communi-
cations engineering. Bandwidth limitation was first
felt in connection with submarine telegraphy and
led to the results of Kelvin and Heaviside. By 1928
Hartley and Nyquist were taking a more general
approach to telegraphy, linking transmission speed
and bandwidth in a precise way.
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As wireless telegraphy and telephony began
to develop, new forms of bandwidth limitation
were found. The two simplest ways of sharing a
channel are time-division and frequency-division
multiplexing. The former stimulated the work of
Raabe. The latter, in which different signals are
assigned different band-regions, raises the question
of how much bandwidth needs to be allocated to
a signal. We have seen that Kotel' nikov, Someya,
and Shannon addressed the problem. The work
of Shannon, in particular, established a bridge
between developments that had their origin in
telegraphy, multiplexing, mathematics, and signal
analysis.

The recent growth in bandwidth usage due to
the widespread use of mobile devices is raising new
challenges. The “crowding of the ether” is a problem
as pressing today as it was in Kotel'nikov’s time.
Bandwidth remains precious: half of the 108 MHz
of prime spectrum freed thanks to the recent
shift to digital television in the United States
was auctioned by the U.S. Treasury and sold for
$19 billion. Telecommunications, as a source of
problems of theoretical interest and practical
importance, has not yet been exhausted.
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