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Abstract

We consider the problem of estimating the correlation in bivariate normal data when the means

and variances are assumed known, with emphasis on the small sample case. We consider eight

different estimators, several of them considered here for the first time in the literature. In

a simulation study, we found that Bayesian estimators using the uniform and arc-sine priors

outperformed several empirical and exact or approximate maximum likelihood estimators in

small samples. The arc-sine prior did better for large values of the correlation. For testing

whether the correlation is zero, we found that Bayesian hypothesis tests outperformed signif-

icance tests based on the empirical and exact or approximate maximum likelihood estimators

considered in small samples, but that all tests performed similarly for sample size 50. These

results lead us to suggest using the posterior mean with the arc-sine prior to estimate the

correlation in small samples when the variances are assumed known.

Keywords: Arc-sine prior; Bayes factor; Bayesian test; Maximum likelihood estimator;

Uniform prior; Jeffreys prior.



1 INTRODUCTION

Sir Francis Galton defined the theoretical concept of bivariate correlation in 1885, and a

decade later Karl Pearson published the formula for the sample correlation coefficient, also

known as Pearson’s r (Rodgers and Nicewander, 1988). The sample correlation coefficient is

still the most commonly used measure of correlation today as it assumes no knowledge of the

means or variances of the individual groups and is the maximum likelihood estimator for the

correlation coefficient in the bivariate normal distribution when the means and variances are

unknown.

In the event that the variances are known, information is lost by using the sample cor-

relation coefficient. We cannot simply substitute the known variance quantities into the

denominator of the sample correlation coefficient since that results in an estimator that is not

the maximum likelihood estimator and has the potential to fall outside the interval [−1, 1].

When the variances are known, we seek an estimator that takes advantage of this information.

Kendall and Stuart (1979) noted that conditional on the variances, the maximum likelihood

estimator of the correlation is the solution of a cubic equation. Sampson (1978) proposed a

consistent, asymptotically efficient estimator based on the cubic equation that avoided the

need to solve the equation directly. In a simulation study, we found that when the true

correlation is zero and the sample size is small, the variances of these estimators are undesirably

large. This led us to search for more stable estimates of the correlation, which condition on

the known variances and perform well when sample sizes are small.

Our interest in this problem arose in the context of probabilistic population projections.

Alkema et al. (2011) developed a Bayesian hierarchical model for projecting the total fertility

rate (TFR) in all countries. This model works well for projecting the TFR in individual

countries. However, for creating aggregated regional projections, there was concern that

excess correlation existed between the country fertility rates that was not accounted for in

the model. To investigate this we considered correlations between the normalized forecast

errors in different countries, conditional on the model parameters. Often there were as few

as five to ten data points to estimate the correlation. For each pair of countries, these errors

were treated as samples from a bivariate normal distribution with means equal to zero and

variances equal to one. Determining whether the correlations between the countries are non-

zero, and if so estimating them, is necessary to assess the predictive distribution of aggregated

projections.

In Section 2 we describe the estimators we consider, in Section 3 we give the results of our
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simulation study, and in Section 4 we discuss alternative approaches.

2 ESTIMATORS OF CORRELATION

Let (Xi, Yi), i = 1, . . . , n be independent and identically distributed observations from a

bivariate normal distribution with means equal to zero, variances equal to one, and correlation

unknown. We let SSx =
∑n

i=1 X
2
i , SSy =

∑n
i=1 Y

2
i , and SSxy =

∑n
i=1 XiYi and consider

eight estimators of the correlation.

The first estimator is the maximum likelihood estimator for bivariate normal data when

the variances are unknown. We refer to this as the sample correlation coefficient even though

we have conditioned on the means being zero. This estimator is defined as follows:

ρ̂(1) =

∑n
i=1XiYi
n√

(
∑n
i=1X

2
i

n
)(

∑n
i=1 Y

2
i

n
)

=
SSxy√
SSx SSy

.

The second estimator is a modification of the first estimator, where we assume the variances

are known to be equal to one. We name this estimator the empirical estimator with known

variances and define it as:

ρ̂(2) =

∑n
i=1 XiYi
n

=
SSxy

n
.

This estimator is unbiased yet is not guaranteed to fall in [−1, 1], especially for small sam-

ples. This unappealing property motivated us to define the third estimator called the truncated

empirical estimator with known variances, ρ̂(3), where the second estimator is truncated at −1

if it falls below −1 and at 1 if it falls above 1.

The maximum likelihood estimator (MLE) when the means are known to be zero and

variances are known to be one is the fourth estimator. This estimator is found by solving the

cubic equation

0 = ρ3 − ρ2SSxy

n
− ρ(n− SSx− SSy)

n
− SSxy

n
, (1)

which results from setting the derivative of the log-likelihood equal to zero. If we define

ψ ≡ ψ(SSx, SSy, SSxy) = −3n(n− SSx− SSy)− SSxy2, and

γ ≡ γ(SSx, SSy, SSxy) = −36n2SSxy + 9nSSx× SSxy + 9nSSy × SSxy − 2SSxy3,
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then the three roots of this equation can be written fairly compactly, as follows:

ρ
(4)
1 =

SSxy

3n
+

21/3 (ψ)

3n

(
γ +

√
4 (ψ)3 + (γ)2

)1/3
−

(
γ +

√
4 (ψ)3 + (γ)2

)1/3

3× 21/3n
,

ρ
(4)
2 =

SSxy

3n
−

(
1 + i

√
3
)

(ψ)

3× 22/3n

(
γ +

√
4 (ψ)3 + (γ)2

)1/3
+

(
1− i

√
3
)(

γ +
√

4 (ψ)3 + (γ)2

)1/3

6× 21/3n
,

ρ
(4)
3 =

SSxy

3n
−

(
1− i

√
3
)

(ψ)

3× 22/3n

(
γ +

√
4 (ψ)3 + (γ)2

)1/3
+

(
1 + i

√
3
)(

γ +
√

4 (ψ)3 + (γ)2

)1/3

6× 21/3n
.

Kendall and Stuart (1979) noted that at least one of the roots above is real and lies in

the interval [−1, 1]. However, it is possible that all three roots are real and in the admissible

interval, in which case the likelihood can be evaluated at each root to determine the true

maximum likelihood estimate. Based on whether (SSxy/n)2 is bigger than 3(SSx/n+SSy/n−
1), and whether γ/(2ψ) is bigger than 1, Madansky (1958) specified conditions under which

each of the three roots is the maximum likelihood estimate.

Sampson (1978) acknowledged the effort involved in computing the maximum likelihood

estimate when the variances are known and proposed an asymptotically efficient estimator of

the correlation based solely on the coefficients in the cubic equation (1). Sampson’s estimator

does not necessarily fall in the interval [−1, 1] so he suggested truncating the estimate to

lie in the interval, as was done with the empirical estimator with known variances. This less

computationally intensive estimator is referred to as Sampson’s truncated MLE approximation,

ρ̂(5), and is the fifth estimator we consider.

The remaining three estimators are Bayesian. Our sixth estimator is the posterior mean
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Figure 1: The density of each of the priors for the Bayesian estimators are shown. The Jeffreys
curve is an approximation since it is not integrable on [−1, 1]. Observe that the arc-sine and
Jeffreys priors are very similar, but the Jeffreys puts more weight on extreme values.

assuming a uniform prior, which has the form:

ρ̂(6) = E[ρ|X, Y ] =

∫ 1

−1
ρ
2

(
1

2π
√

1−ρ2

)n
exp

(
− 1

2(1−ρ2)
[SSx− 2ρSSxy + SSy]

)
dρ

∫ 1

−1
1
2

(
1

2π
√

1−ρ2

)n
exp

(
− 1

2(1−ρ2)
[SSx− 2ρSSxy + SSy]

)
dρ

where X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). The denominator is the integral of the likeli-

hood of the bivariate normal data multiplied by 1/2, representing the Uniform(−1, 1) prior,

while the numerator is the same but with the integrand multiplied by ρ for the expectation.

Jeffreys (1961) described the improper prior, conditional on the variances, as:

λJeffreys(ρ) ∝
√

1 + ρ2

1− ρ2
.

This prior was the basis for the seventh estimator: the posterior mean assuming a Jeffreys

prior, ρ̂(7).

Finally, Jeffreys (1961) noted that the arc-sine prior,

λarc−sine(ρ) =
1

π

1√
1− ρ2

,
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is similar to the Jeffreys prior, but integrable on [−1, 1]. The posterior mean assuming an

arc-sine prior, ρ̂(8), represents the eighth, and final, estimator investigated.

Each of these priors is shown in Figure 1. The curve for the Jeffreys prior is an approxima-

tion since it is not integrable on [−1, 1]. Note that the arc-sine distribution on ρ is equivalent

to placing a generalized beta (2, 1, 0.5, 0.5) of the first kind on |ρ| (McDonald (1984)). Simi-

larly, the uniform prior corresponds to a generalized beta (1, 1, 1, 1) of the first kind on |ρ|.
Of these estimators, the empirical estimator with known variances and truncated empirical

estimator with known variances are, to our knowledge, proposed here for the first time.

3 SIMULATION STUDY

3.1 Estimating the Correlation

Samples of sizes 5, 10, and 50 were generated from a bivariate normal distribution with means

equal to zero, variances equal to one, and a specified correlation value. The estimators were

first evaluated for positive and negative values of the correlation and were all found to be

symmetric. Thus values of the correlation were sampled uniformly from symmetric intervals

on [−1, 1] to analyze how the estimators performed for different magnitudes of correlation.

The estimators were compared based on root mean squared error using one million samples.

The results are shown in Table 1.

Numerical issues arose when computing the integrals involved in the posterior mean es-

timators in cases where the true correlation value was extremely close to one in magnitude.

To handle this, a tolerance of 10−6 × n was put on the value of |SSx + SSy ± 2SSxy| since

SSx+ SSy ± 2SSxy = 0 signifies a correlation of ∓1, respectively. When this tolerance was

satisfied, the correlation estimate was given the appropriate value of 1 or −1. This approxi-

mation was used about ten times out of one million in the [0, 1] interval and thirty times out

of one million in the [0.75, 1] interval for each sample size.

For the first column, since the correlations were drawn uniformly from the interval [−1, 1],

the Bayesian estimator assuming a uniform prior will have the lowest mean squared error

according to theory. In samples of size 5, the uniform and arc-sine priors had superior per-

formance over the entire [−1, 1] interval compared to the other estimators, with a root mean

squared error of about 0.3. The empirical estimator with known variances performed least

well, whereas the maximum likelihood estimator and sample correlation coefficient performed

similarly, with the sample correlation coefficient doing slightly better. This suggests that in

small sample sizes, knowing the variances yields no improvement when using the maximum
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Table 1: Root mean squared errors multiplied by 1000 are shown for each estimator based on
one million simulated data sets (n=sample size). The estimators with the smallest root mean
squared error are shown in bold for each sample size and each true correlation interval.

|ρ|
n Estimator [0,1] [0,.25] [.25,.50] [.50,.75] [.75,1]
5 Sample Correlation Coeff 352 442 406 326 172

Emp w/ Known Var 516 452 479 529 595
Trunc Emp w/ Known Var 387 419 399 369 358
MLE 373 464 437 352 161
Sampson’s MLE Approx 382 462 435 357 232
Mean w/ Uniform Prior 297 289 315 332 244
Mean w/ Jeffreys Prior 311 358 354 319 182
Mean w/ Arc-sine Prior 299 316 330 325 213

10 Sample Correlation Coeff 240 311 280 213 101
Emp w/ Known Var 365 319 338 373 421
Trunc Emp w/ Known Var 299 314 312 295 274
MLE 248 334 295 203 72
Sampson’s MLE Approx 249 333 295 206 90
Mean w/ Uniform Prior 216 241 246 227 124
Mean w/ Jeffreys Prior 222 277 261 208 92
Mean w/ Arc-sine Prior 217 254 251 219 109

50 Sample Correlation Coeff 104 139 122 88 39
Emp w/ Known Var 163 143 151 167 188
Trunc Emp w/ Known Var 150 143 151 161 145
MLE 100 142 117 75 29
Sampson’s MLE Approx 100 142 117 75 29
Mean w/ Uniform Prior 97 129 116 82 33
Mean w/ Jeffreys Prior 98 135 115 78 30
Mean w/ Arc-sine Prior 98 131 116 80 32
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likelihood estimator.

However, when the correlations are decomposed by magnitude, a different story is told. For

extreme correlation values, the sample correlation coefficient, maximum likelihood estimator

and posterior mean assuming a Jeffreys prior had the smallest root mean squared errors. The

Jeffreys prior is highly concentrated at extreme correlation values so we would expect it to

outperform the other Bayesian estimators in the last interval. The posterior mean assuming

an arc-sine prior and that assuming a uniform prior had root mean squared errors 1.3 and 1.5

times as large as that for the MLE, or best estimator. Conversely, at low values of correlation,

the uniform and arc-sine posterior mean estimates had significantly lower root mean squared

error than all other estimators. The posterior median estimators for each of the priors was

also considered. Overall they performed very similar to the posterior mean estimates and

hence are not included here.

In general, one does not know the magnitude of the correlation to be estimated, so an

estimator that performs well for all levels of correlation is desired. Both the posterior mean

assuming an arc-sine prior and that assuming a uniform prior had routinely low root mean

squared error values when compared to the other estimators and were fairly consistent across

the different correlation magnitudes. Therefore, we concluded that these should be the meth-

ods of choice for small sample sizes. One might argue that if estimating large correlations

accurately is of greater interest then the posterior mean assuming the arc-sine prior should be

used since it outperforms that with a uniform prior at extreme correlations.

As the sample size increased from 5 to 10 and from 10 to 50, the root mean squared

errors decreased for all estimators, as expected. For samples of size 50, the root mean squared

errors for correlations on the entire interval [−1, 1] were low and effectively the same for

all estimators except the empirical estimators when the variances are known. However, the

estimators’ performances by magnitude of the correlation still varied as in the case of samples

of size 5.

Sampson’s truncated approximation of the maximum likelihood estimator performed sim-

ilarly to the maximum likelihood estimator for smaller sample sizes and almost identically

for the larger sample sizes. This is because, as the sample size increases, the probability of

the cubic equation having more than one real root goes to zero. Thus, large samples make it

easier to use properties of cubic equations to pinpoint the correct MLE root.

Figure 2 shows the first 5,000 samples of each estimator’s correlation estimates and the

true correlation values for samples of size 5. Notice that the empirical estimate with known

variances often lay outside the range [−1, 1]. In addition, for small values of the correla-
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Table 2: 95% Significance Test bounds for testing if ρ > 0 for the non-Bayesian estimators
when ρ = 0 based on one million simulated data sets.

Sample Size 5 10 50
Sample Correlation Coeff 0.729 0.522 0.233
Emp w/ Known Var 0.731 0.518 0.232
Truncated Emp w/ Known Var 0.731 0.518 0.232
MLE 0.754 0.565 0.241
Sampson’s MLE Approx 0.756 0.566 0.241

tion, the empirical estimates, maximum likelihood estimates and Sampson’s estimates were

extremely variable, spanning most of the interval [−1, 1]. The Bayesian estimates showed

a closer association overall between the true correlation value and the estimates, especially

when the true correlation was small. However, there was some curvature in the tails of the

plots for the Bayesian estimators, suggesting that the estimators typically underestimate the

magnitude of the correlation when the true correlation is high. This is to be expected, as the

Bayesian approach shrinks estimators away from the extremes.

3.2 Hypothesis Tests

Estimating the value of the correlation is important, but often with small sample sizes our

interest is not in its actual value but simply in whether or not it is non-zero. We often have

knowledge about the sign of the correlation between two variables. Here we consider the case

when we are interested in testing if the correlation is positive.

One way of testing this is to look at the confidence bounds of the estimators. A level

0.05 test of whether the true correlation is positive can be derived by generating numerous

samples of independent bivariate normal random variables with means equal to zero and

variances equal to one, calculating a correlation estimate for each sample, and determining

the sample 95% quantile of the correlations. A level 0.05 test then rejects the hypothesis that

the correlation is zero in favor of the alternative that it is positive if the estimate obtained

is greater than the 95% quantile, i.e. the significance test bound. Table 2 shows the 95%

significance test bounds for all non-Bayesian estimators based on one million simulations with

ρ = 0. For example, for the sample correlation coefficient, the significance test bound for

samples of size 5 is 0.73, indicating that about 5% of the samples resulted in an estimated

correlation value greater than 0.73.

For Bayesian tests, Jeffreys (1935, 1961) developed ideas based on Bayes factors for test-
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Figure 2: For samples of size 5, the true and estimated correlation values for each estimator
is shown above for the first 5,000 samples. The dotted lines in the empirical with known
variances plot mark the admissible interval [−1, 1].
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Table 3: Value of c such that the Bayes factor has 5% probability of exceeding c if the true
value of ρ is 0 (i.e. P(B10 > c|ρ = 0) = 0.05) based on one million simulated data sets.

Sample Size 5 10 50
Uniform Prior 2.701 2.304 1.238
Arc-sine Prior 2.275 1.715 0.817

ing/deciding between two models; see also Kass and Raftery (1995). A Bayes factor, B10, is

the ratio of the probability of the data under the alternative model to the probability of the

data under the null model. Equivalently, it is the ratio of the posterior odds for the alternative

against the null model, to its prior odds. A test that rejects the null hypothesis when B10 > 1

minimizes the sum of the probabilities of Type I and Type II errors if the prior odds between

the models are equal to one.

However, if we wish to fix the probability of a Type I error at 0.05 for example, we can

generate data under the null model and determine the value c such that the probability under

the null model that the Bayes factor is greater than c is 0.05. A level 0.05 test is then carried

out for the null model against the alternative model by rejecting the null model if the Bayes

factor is greater than c. This method was used with ρ = 0 as the null hypothesis and ρ > 0

as the alternative hypothesis to compare the performance of the Bayesian and non-Bayesian

methods when the Type I error is fixed at 0.05. Note that the Bayes factor is

B10 =
P (X, Y |ρ > 0)

P (X, Y |ρ = 0)
=

∫ 1

0
p(X, Y |ρ)p(ρ|ρ > 0)dρ

p(X)p(Y )
=

2
∫ 1

0
p(X, Y |ρ)p(ρ)dρ

p(X)p(Y )
(2)

where p(ρ) is one of the three prior distributions for ρ and the denominator is the product of

the marginal probabilities assuming ρ = 0, or independence. The factor of two in equation (2)

is due to the fact all prior distributions are centered at zero. The Bayes factor is undefined

for the Jeffreys prior so we do not consider it here forward.

Table 3 shows the values of c obtained for the various prior distributions and sample sizes.

We see that as sample size increased, the values of c decreased since the amount of evidence

for the null increased. Also, the values of c for the arc-sine prior were much greater than those

for the uniform prior, reflecting the fact that the arc-sine prior places more weight on extreme

correlation values.

Table 4 shows the power when the true correlation was uniformly generated from various

intervals for each of the non-Bayesian significance tests and the tests based on Bayes factors.

In samples of size 5 the Bayesian tests had the greatest power over the entire [0, 1] interval and
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Table 4: Average power multiplied by 1000 over intervals for ρ when testing ρ = 0 vs ρ > 0
at the 0.05 significance level based on one million simulated data sets. For the non-Bayesian
estimators, the significance test bounds found in Table 2 were used. The Bayesian tests were
based on the Bayes factors using the value of c listed in Table 3. The tests with the largest
power are shown in bold for each sample size and each correlation interval.

ρ
n Test Based on [0,1] [0,.25] [.25,.50] [.50,.75] [.75,1]
5 Sample Correlation Coeff 383 81 187 423 839

Emp w/ Known Var 288 89 198 348 517
Trunc Emp w/ Known Var 288 89 198 348 517
MLE 356 69 141 352 862
Sampson’s MLE Approx 355 69 140 350 861
Uniform Prior 397 82 196 442 869
Arc-sine Prior 397 81 192 440 875

10 Sample Correlation Coeff 529 106 326 708 977
Emp w/ Known Var 441 110 302 562 793
Trunc Emp w/ Known Var 441 110 302 562 793
MLE 505 88 262 682 990
Sampson’s MLE Approx 505 88 260 680 990
Uniform Prior 534 105 325 722 985
Arc-sine Prior 534 104 323 723 987

50 Sample Correlation Coeff 770 250 833 998 1000
Emp w/ Known Var 759 245 800 993 1000
Trunc Emp w/ Known Var 759 245 800 993 1000
MLE 768 238 834 999 1000
Sampson’s MLE Approx 768 238 834 999 1000
Uniform Prior 772 250 838 998 1000
Arc-sine Prior 772 250 838 999 1000

for the most extreme correlation values. For the smaller correlation values, all tests, except

possibly those based on the MLE and Sampson’s MLE, performed about the same. The tests

based on the arc-sine prior and uniform prior performed similarly for all correlation values

and sample sizes. As sample size increased, the difference between the powers of the tests

based on the MLE and Sampson’s MLE and all others decreased.

As mentioned, tests based on the Bayes factor are optimal in that they minimize the sum

of the probabilities of Type I and Type II errors when simulating from the prior. For this

reason the uniform prior performs best over the entire interval [0,1] for all sample sizes. Table

5 shows the average value of the Type I and Type II error probabilities when the standard rule

of rejecting the null hypothesis when the Bayes factor is greater than one is used. This optimal

Bayesian method is compared with the significance test bound procedure for the non-Bayesian

estimators via this average error measure. The Bayesian tests had the smallest average error

11



Table 5: Average error probability, [Type I + Type II]/2, when testing if ρ = 0 versus ρ > 0,
multiplied by 1000, based on one million simulated data sets. The error probabilities for
the non-Bayesian tests are based on 0.05 level significance tests and the Bayesian test error
probabilities are based on rejecting the null hypothesis that ρ = 0 if the Bayes factor is greater
than 1. The tests with the smallest average error are shown in bold for each sample size and
each correlation interval.

ρ
n Test Based on [0,1] [0,.25] [.25,.50] [.50,.75] [.75,1]
5 Sample Correlation Coeff 333 485 431 313 106

Emp w/ Known Var 381 480 426 351 267
Trunc Emp w/ Known Var 381 480 426 351 267
MLE 347 490 455 349 94
Sampson’s MLE Approx 348 491 455 350 95
Uniform Prior 284 460 351 210 113
Arc-sine Prior 289 469 374 225 88

10 Sample Correlation Coeff 261 472 362 171 37
Emp w/ Known Var 304 470 374 244 129
Trunc Emp w/ Known Var 304 470 374 244 129
MLE 272 481 394 184 30
Sampson’s MLE Approx 273 481 395 185 30
Uniform Prior 235 446 291 128 76
Arc-sine Prior 240 458 319 132 51

50 Sample Correlation Coeff 140 400 109 26 25
Emp w/ Known Var 145 402 125 29 25
Trunc Emp w/ Known Var 145 402 125 29 25
MLE 141 406 108 25 25
Sampson’s MLE Approx 141 406 108 25 25
Uniform Prior 139 389 100 33 32
Arc-sine Prior 142 411 114 21 20

for samples of size 5. The MLE and Sampson’s MLE approximation performed very similarly

to the Bayesian tests at the extreme correlation values.

At larger sample sizes, the tests performed effectively equally well. For the extreme cor-

relation values with samples of size 50, all tests have essentially 100% power so their average

error achieves its lower bound at one-half the Type I error rate. Notice again that the tests

based on the arc-sine prior had slightly smaller average error than that assuming a uniform

prior at extreme correlation values and that its performance on the entire interval [0, 1] was

close to the uniform, which was best.
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4 DISCUSSION

We have considered the estimation of the correlation in bivariate normal data when the means

and variances are assumed known, with emphasis on the small sample situation. Using simula-

tion, we found that the posterior mean using a uniform prior or an arc-sine prior consistently

outperformed several previously proposed empirical and exact and approximate maximum

likelihood estimators for small samples. The arc-sine prior performed similarly to the uniform

prior for small values of ρ, and better for large values of ρ in small samples. This suggests

using the posterior mean with the arc-sine prior for estimation when it is important to identify

extreme correlations.

For testing whether the correlation is zero, we carried out a simulation for positive values

of ρ within specified intervals, and found that Bayesian tests had smaller average error than

the non-Bayesian tests when n = 5. With n = 50, however, all the tests performed similarly.

Spruill and Gastwirth (1982) derived estimators of the correlation when the data are normal

but the variables are contained in separate locations and cannot be combined. Their work

combines the data into groups based on the value of one variable to obtain an estimate of the

correlation. This differs from the more usual situation considered here where both variables

are available in their sampled pairs.

Estimation of the sample correlation coefficient with truncation was investigated by Gajjar

and Subrahmaniam (1978). However, it is the underlying distribution that is assumed to be

truncated instead of the estimator as here.

Data sets and distributions for which use of the sample correlation coefficient is inappro-

priate were investigated by Carroll (1961). Norris and Hjelm (1961) considered estimation of

correlation when the underlying distribution is not normal, and Farlie (1960) considered it

for general bivariate distribution functions. Since we limit ourselves to the bivariate normal

distribution, we did not consider these estimators.

Olkin and Pratt (1958) derived unbiased estimates of the correlation in the case when the

means are known and the case when all parameters are unknown. This addresses different

situations to the one we have considered, where the variances are also assumed known.

Others have considered estimating the correlation in a Bayesian framework for the bi-

variate normal setting. Berger and Sun (2008) addressed this problem using objective priors

whose posterior quantiles match up with the corresponding frequentist quantiles. Ghosh et al.

(2010) extended these results by considering a probability matching criterion based on highest

posterior density regions and the inversion of test statistics. However, in both cases the focus
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was on matching frequentist probabilities rather than estimation accuracy.

Much of the other Bayesian correlation work relates to estimation of covariance matrices.

Barnard et al. (2000) discussed prior distributions on covariance matrices by decomposing

the covariance matrix into Σ = SRS where S = diag(σ) is a diagonal matrix of standard

deviations and R is the correlation matrix. With this, one can use the prior factorization

p(σ,R) = p(σ)p(R|σ) to specify a prior on the covariance matrix. Barnard et al. (2000) suggest

some default choices for the prior distribution on R that are independent of σ. Specifically

they mention the possibility of placing a uniform distribution on R, p(R) ∝ 1, where R must

be positive definite. The marginal distributions of the individual correlations are then not

uniform. Alternatively, for a (d× d) matrix R one can specify

p(R|ν) ∝ |R|
1
2

(ν−1)(d−1)−1

(
d∏
i=1

|Rii|−ν/2
)
, ν ≥ d,

where Rii is the ith principal submatrix of R. This is the marginal distribution of R when

Σ has a standard inverse-Wishart distribution with ν degrees of freedom and results in the

following marginal distribution on the pairwise correlations

f(rij|ν) ∝ (1− r2
ij)

ν−d−1
2 , where |rij| ≤ 1

Uniform marginal distributions for all pairwise correlations comes from the choice ν = d+ 1.

Note that for ν = 2 and d = 2, this prior reduces to the arc-sine prior. This is the boundary

case that is the most diffuse prior in the class. Barnard et al. (2000) discussed using these

priors for shrinkage estimation of regression coefficients and a general location-scale model

for both categorical and continuous variables. Zhang et al. (2006) focused on methods for

sampling such correlation matrices.

Liechty et al. (2004) considered a model where all correlations have a common truncated

normal prior distribution under the constraint that the resulting correlation matrix be positive

definite. They also considered the model where the correlations or observed variables are

clustered into groups that share a common mean and variance. Chib and Greenberg (1998)

assumed a multivariate truncated normal prior in the context of a multivariate probit model,

and Liu and Sun (2000) and Liu (2001) assumed a Jeffreys’ prior on R in the context of a

multivariate probit and multivariate multiple regression model.

A number of advances have been made with respect to estimation of the covariance ma-

trix treating the variances as unknown, unlike here. Geisser and Cornfield (1963) developed

posterior distributions for multivariate normal parameters with an objective prior, and Yang
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and Berger (1994) focused on estimation with reference priors. Geisser (1965), Tiwari et al.

(1989), and Press and Zellner (1978) derived posterior distributions of the multiple correlation

coefficient using the prior from Geisser and Cornfield, an informative beta distribution, and

diffuse and natural conjugate priors assuming fixed regressors, respectively. It is possible that

some of these ideas regarding prior specification of covariance matrices could be applied to

the present setting or be used to extend this work to the multivariate setting.
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