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Abstract:  The aim of this paper is to demonstrate how the appropriate 
numerical, statistical and computer techniques can be successfully applied to 
the modeling of some physical systems. We propose to use a fast and accurate 
method of computer generation of L6vy a-stable random variates. 

1 I n t r o d u c t i o n  

The past few years have witnessed an explosive growth in interest in physical and 
engineering systems that  could be studied using stochastic and chaotic methods, 
see Berliner (1992), Chatterjee and Yilmaz (1992), and Shao and Nikias (1993). 
"Stochastic" and "chaotic" refer to nature's two paths to unpredictability, or un- 
certainty. To scientists and engineers the surprise was that  chaos (making a very 
small change in the universe can lead to a very large change at some later time) is 
unrelated to randomness. Things are unpredictable if you look at the individual 
events; however, one can say a lot about averaged-out quantities. This is where 
the stochastic stuff comes in. Stochastic processes are recognized to play an im- 
portant  role in a wide range of problems encountered in mathematics,  physics 
and engineering. Recent developments show that  in many practical applications 
leading to appropriate stochastic models a particular class of L6vy ol-stable pro- 
cesses is involved. While the a t tempt  at mathematical understanding of these 
processes leads to severe analytical difficulties, there exist very useful approxi- 
mate  numerical and statistical techniques (see Janicki and Weron (1994b)). Also 
non-Gaussian statistical methods in stochastic modeling are important  when 
noises deviate from the ideal Gaussian model. Stable distributions are among 
the most important  non-Gaussian models. They share defining characteristics 
with the Gaussian distribution, such as the stability property and central limit 
theorems, and include in fact the Gaussian distributions as a special case. To 
help the interested reader better understand the stable models and necessary 
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methodologies we discuss here tutorial examples of c~-stable Ornstein-Uhlenbeck 
process and continuous-time random walks subject to c~-stable displacement. 

2 Computer Generation of L d v y  s - S t a b l e  D i s t r i b u t i o n s  

The most common and convenient way to introduce L~vy a-stable random vari- 
ables is to define their characteristic function 

{ - ~ l t l ~ { 1  - iflsign(t)tan -~-} + i#t, a ~t 1, 
= (2.1) 

log ¢(t) -crltl{1 + iflsign(t)~ log Itl} + i#t, a = 1, 

where a e (0, 2],/3 e [-1, 1], ~ > O, tt e R. 
Since (2.1) is characterized by four parameters we will denote a-stable dis- 

tributions by S~(~r,/3, tt) and write 

x ~ (2.2)  

to indicate that  X has the stable distribution Sa(a,/3, p). When a = 1 and tt = 0 
the distribution is called standard stable. 

The location parameter tt shifts the distribution to the left or right. The scale 
parameter cr compresses or extends the distribution about #. Some authors use 
7 = c~ instead of a, but it no longer has the natural interpretation of the scale 
parameter. The characteristic exponent a lies in the range (0, 2] and determines 
the rate at which the tails of the distribution taper off. When a = 2, a Gaussian 
distribution results, with mean p and variance 2a 2. When a < 2, the variance 
is infinite. When c~ > 1, the mean of the distribution exists and is equal to p. 
In general, the p- th  moment of a stable random variable is finite iff p < a. 
The fourth parameter, which determines the skewness of the distribution, is 
designated/3 and lies in the range [-1, 1]. When/3 is positive, the distribution 
is skewed to the right. When it is negative, it is skewed to the left. When fl = 0, 
the distribution is symmetrical. As a approaches 2, /3 loses its effect and the 
distribution approaches the symmetrical Gaussian distribution regardless of ft. 

The complexity of the problem of simulation of sequences of stable random 
variables results from the fact that there are no analytic expressions for the 
inverse F -1 of the distribution function. The only exceptions are the Gaussian 
$2(~, 0, #) = N(#, 2~2), Cauchy $1(~, 0, it) and L~vy $1/2(~, 1, tt), S1/2(cr, - 1 ,  it) 
distributions, for which simple methods of simulation have been found. 

Even recently new ways for simulating stable random variables are sought 
for in physical literature. For example, Mantegna (1994) proposes a "fast and 
accurate" Mgorithm for the symmetric case (/3 = 0, tt = 0) based on Bergstrom 
series expansion. This algorithm may be fast but there are no proofs of its 
accuracy, except visual similarities of densities. Moreover, arguments used in the 
paper are not reliable since the author mixes the basic concepts of probability 
theory like density, distribution and stochastic process. 

We propose to use a well known in mathematical literature method of com- 
puter generation of a symmetric a-stable random variable X ~ S~(1, 0, 0). For 
a (0, 2] 
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X = Sa,# x 

where 

l r  ?F 
- generate a random variable V uniformly distributed on ( - y ,  y) and an in- 

dependent exponential random variable W with mean 1; 
- compute 

sin(aV) x ( c o s ( V ~  a V ) ) 0 - ~ ) / ~ .  (2.3) 
X -  (eos(V))i/~ W 

In a similar way to (2.3), reparametrizing the algorithm of Chambers et al. 
(1976) or using the theorem of Weron (1995a), we can construct a method of 
computer generation of a skewed random variable X ,., Sa(1, fl, 0). For a e (0, 2] 
and f l e  [-1, 1] 

- generate a random variable V uniformly distributed on ( -{ ,  {) and an in- 
dependent exponential random variable W with mean 1; 

- for a ~ 1 compute 

sin(a(V + B.,#)) (¢os(V - a(V + B.,#))) 0-")/", (2.4) 
( cos (V) )  l i d  × W 

arctan(fl tan ~ )  
Ba,#  - 

ot 

ra ] z/(2,) 
Sa,# = 1 + f12 tan 2 -2" 

- for a = 1 compute 

-[ X =  ~r2 ( + flV) tan V _ fl log \ { + flV ] j 

Formula (2.4) was initially presented by Janicki and Weron (1994a). However, 
there is a misprint in the form for C~,# (the denominator is 1 -  [1- a[ instead of a, 
Formula (3.5.2), page 50), which corresponds to our Ba,#, and a eomputationally 
more complicated form for D~,# (our S~,#). 

We have given formulas for simulation of standard stable random variables. 
Using the following property, which follows from the form of the characteristic 
function, we can simulate a stable random variable for all admissable values of 
the parameters c~, ~, j3 and/~: 

I f X  ~ &~(1, fl, O) then 

Y =  { ~ X + p ,  ~ ¢ 1 ,  

~ X + ~ f l ~ l o g ~ + # ,  a = l ,  

is S.(~, #, U). 
We regard the methods defined by (2.3), (2.4) and (2.5) as good techniques 

of computer generation of a-stable random variables, stochastic measures and 
processes of different kinds. For more details see Janicki and Weron (1994a) and 
Weron (1995a). 
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3 Simulation of L6vy c~-Stable Stochastic Processes 

Now we describe rather general technique of approximate computer simulation 
of univariate a-stable stochastic processes {X(t) : t • [0, T]} with independent 
increments, which is based on a construction of a discrete time process of the 
form -rXr 1I defined by the formula t tiJi=O, 

Z:i  -~ X:i_,  + J:(ti-1,  X:i_x ) + Yl r , (3.1) 

with a given X~, and where Yir's form a sequence of i.i.d, a-s table random 
variables. 

In computer calculations each random variable X[~ defined by (3.1) is repre- 
sented by its N independent realizations, i.e. a random sample {X[ (n)}N=l . So, 
let us fix N EAf large enough. The algorithm consists in the following: 

1. simulate a random sample {X~(n)}nn=l for X~; 
2. for i = 1, 2, ..., I simulate a random sample {Yi*(n)}g=l for a-stable random 

variable Yi * ,v S~(rl/~, 0, 0), with appropriately chosen r; 
3. for i = 1,2, . . . , I ,  in accordance with (3.1), compute the random sample 

X[(n) = Xg_l(n ) + ~(*i-*, Xg_l(n)) + Yi~(n), n = 1, 2, ..., N; 
4. construct kernel density estimators fi = f[,N = f[,N(x) of the densities 

of X(ti),  using for example the optimal version of the Rosenblatt-Parzen 
method. 

Observe that  we have produced N finite time series of the form {X ir (n)}i= 0 I  
for n = 1, 2, ..., N. We regard them as "good" approximations of the trajectories 
of the process {X(t); t E [0, T]). 

In particular, the above described algorithm can be succesfully applied to 
the construction of approximate solutions to the following linear stochastic dif- 
ferential equation driven by an a-stable L6vy motion 

/0 // X ( t ) = X o +  (a(s)+b(s)X(s-))ds+ c(s) dL~(s) for t e [ 0 ,  oo), (3.2) 

with X(0) = X0 a given a-stable or discrete random variable. 
Let us notice that  this linear stochastic equation is of independent interest be- 
cause, as is easily seen, the general solution belongs to the class of a-s table 
processes. It may be expressed in the following form 

// // x ( o  = e(t, o)xo + ~(t,s) a(s) d. + ~(t, s) ~(s) dL~(s), 

s) = exp { f; where 

This explains why outliers or heavy tails appear in the constructed approx- 
imate solutions I X r l n ~ l I  t i ~ JJi=0, n = 1,2, ...,N, to (3.2), which can be directly de- 
rived as a special case of (3.1). It is enough to define the set {tl = iv, i = 
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O, 1,..., I},  ~- = T / I ,  describing a fixed mesh on the interval [0, T], and the se- 
quence of i.i.d, random variables AL~, i playing the role of the random a-stable 
measure of the interval [ti-1, t~), i.e. an a--stable random variable defined by 

AL~, i = L~([ti-1, ti)) ~ Sa(T l[a, 0, 0); (3.3) 

and to choose X~ = X0 ~ S~(a, 0, p), computing 

X~ = X[~_I + (a(ti-1) + b(t,-1) X[~_I) T + c(ti_l)AL~,i,  (3.4) 

for i = 1, 2, ..., I. 
An appropriate convergence result justifying the method can be found in 

Janicki, Michna and Weron (1994). 
In order to obtain a graphical computer presentation of the discrete time 

stochastic process of the form (3.1), we propose the following approach: 

1. fix a rectangle [0, T] × [c, d] that should include the trajectories of {Z(t)}; 
2. for each n = 1,2, ...,nma~ (with fixed nma~ << N) draw the line segments 

determined by the points (ti-1, X[_l(n)) and (ti, X[(n))  for i = 1, 2, ..., I,  
constructing n,~ax approximate trajectories of the process X; 

3. fixing values of a parameter pj E (0, 1), j = 1, 2, ..., J ,  it is possible do 
derive from each statistical sample {X[(n)}N=I with fixed i • {0, 1, ..., I} 
estimators of corresponding quantiles q',J = F[-l(pj), where Fi = Fi(x) 
denotes the unknown density distribution function of the random variable 
X r represented by the statistical sample {X[  (n)}N=l . In this way we obtain ti 
approximation of the, so called, quantile lines, i.e., the curves qj = qj(t) 
defined by the condition P { X ( t )  >_ qj(t)} = pj. 

3.1 C o n s t r u c t i o n  of  an  s - S t a b l e  O r n s t e l n - U h l e n b e c k  P r o c e s s  

To describe a motion of a particle in a fluid in a model with infinite variance 
(see, e.g., West and Seshadri (1982)) we have to consider a random strength. 
In the classical Langevin equation we obtain that this strength is Gaussian and 
this equation has a form 

/0' /0 V(t) = V(O) - ~ V(s) ds + g dB(s), (3.5) 

where V is a velocity of the particle and -)~ f~ V(s) ds describes the strength 

of a resistance of an environment according to Stokes law and t~ f t  dB(s) is a 
random strength (p and ~ denoting some given constants). 

Generalizing the model we can consider an a-stable random strength and we 
can rewrite the previous equation as follows 

/0' /0 V(t) = V(O) - )~ V(s) ds + # dLa(s), (3.6) 

where {L}~ = {L(t)} is an a-stable L6vy motion. 
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Fig. 3.1. Solution to (3.6) in the case o] ~ = 2.0 and I~ = 2.0. 

0.9  1 

Applying the result of Janicki, Michna and Weron (1994) with some obvious 
modifications we obtain the process Vn approximating the process V. This leads 
to the following formula 

Vn(t )  = V(0) exp(-~t)  + p exp(-~( t  - s)) dL(~) (s ) ,  (3.7) 

where L (n) (t) ~--~[n~] n = z-,j=1 ¢-~,  and Z ; : I  ¢~) ~ L~(1). 
Fig. 3.1 - 3.2 contain graphical results of computer simulations of solutions 

to equation (3.6) for a = 1.3. The problem was to find a value for $ assuring 
stationarity of the process {Y(t) : t > 0}, provided V(0) ,,, $1.3(1,0,0) and 
p = 2.0 were fixed. The figures present the results obtained for two different 
values of $ = 2.0, 4.0. It follows from the presented computer experiment that  
the proper value of $ should be chosen close to 2.0. This can be read from the 
shape of quantile lines, because horizontal quantile lines characterize stationary 
processes. 

4 T e s t s  f o r  I n f i n i t e  V a r i a n c e  

In some physical applications, arises the question whether the stable distribution 
is Gaussian or non-Gaussian. There exist simple and computationally convenient 
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Fig. 3.2. Solution to (3.6) in the case of ~ = 4.0 and l~ = 2.0. 

methods that  are used in practice. The handicap of all three mentioned here 
methods is that  they rely on visual inspection. 

4.1 C o n v e r g i n g  V a r i a n c e  Tes t  

Given a sample X1, . . . ,Xn from a stable distribution, for each 1 < i < n form a 
statistics based on the first i observations 

i 

1 E ( X k  _ ~ i )  2 (4.1) 
S ~ -  i -  1 

k=l 

w i 
where Xi = { ~ k = l  Xi. Then, plot S~ against i. If the population distribution 
has a finite variance, S/~ should converge to a finite value. Otherwise, S~ should 
diverge. Distinguishing between these two cases is rather vague, especially when 
we have only one trajectory (one sample). 

We have checked this method on four samples of size 4000 coming from 
S~(1, 0, 0), for four different a 's.  Fig. 4.1 presents the results. For ~ = 2, the 
distribution is Gaussian with mean p = 0 and a finite variance c~ 2 = 2. As well 

known, in this case E S ~  = c ~2 = 2 and VarS~ = i - ~  4 = ~i-l" When we took 
smaller c~, the plot became more rugged and the values of S~ were much larger 
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Fig. 4.1. Plots of the statistics S~ againsti = 1, ..., 4000 for S,~(1, 0, 0) with (a) cr = 2.0; 
(b)  ~ = 1 .95;  ( c )  ~ = 1 .5;  ( d )  ~ = 0 .5 .  

(note the change of scale on plots (c) and (d)), which suggested infinite variance 
of the population distribution. 

It is much easier to distinguish between finite and infinite variance when we 
have a few samples from each distribution. Fig. 4.2 shows five trajectories for 
every c~ = 2.0, 1.95, 1.5, 0.5. In the latter case, the largest jumps in the trajecto- 
ries differed by an order of magnitude and it was difficult to find two paths that  
would be visible on the same scale. 

4.2 Q - Q  P l o t  

Q-Q plots (or probability plots) are widely used since they provide quick es- 
timates and a quick informal assessment about the fit of a distribution. Fur- 
thermore, when a distribution does not fit, the plot usually tells why this is the 
case, for instance is it because of a single outlying observation or because of a 
systematic departure from the assumptions. 

If we want to test whether certain data X1,... ,  Xn follow the distribution 
function F,  we plot the data on F-probabi l i ty  paper. This is based on a trans- 
formation of the distribution function F (in this case Gaussian) into a straight 
line by applying F to the vertical scale. The graph of y -= F(x )  against x is a 
straight line y = x. 
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Fig. 4.2. Plots of five trajectories of the statistics S~ against i = 1,...,2000 ]or 
S,:,(1, 0, 0) with (a) a = 2.0; (b) a = 1.95; (c) a = 1.5; (d) ~ = 0.5. 

The theoretical basis of plotting on probability paper (see Daniel (1976) or 
Embrechts et al. (1995)) is the fact that  for F continuous the random variable 
F(Xa)  is uniform on (0, 1). Hence, for the ordered sample Z(1) _< ... _< X( , )  we 
know that  

E [  k k = 1, ..., n. F(X(k))] = n + 1' 

Consequently, we could plot k against F(X(~)). However, more common is to 

plot X(k) against F-I( -~-T) .  
If the plot is not approximately linear, the population from which the data  

seemed to be drawn was not F.  In our case this means that  the data  probably 
came from a distribution with infinite variance, see Daniel (1976). 

4 . 3  L o g - T a i l  T e s t  

This test examines the shape of the tails of the estimated distribution. Mandel- 
brot (1963) suggested that  because a non-Gaussian stable variable satisfies the 
relation 

lirnoo x~'P(X > x) = const, (4.2) 
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then for large x a plot of log P(X  > z) against log z should yield a straight line 
with slope - a .  We can use the sample distribution function 

= < (4.3) 

to estimate P(X  <_ x) = 1 - P (X  > x). 
We have tested this method on samples of size 10000 coming from S~ (1, 0, 0), 

for four different a's. For a = 2.0 the distribution is Gaussian and has exponen- 
tial (not inverse power !) tails (see Samorodnitsky and Taqqu (1994), page 16). 
Therefore, the plot is not a straight line. For smaller c~, the plot is approximately 
a straight line and the slope is a rough estimate of -c~. An obvious disadvantage 
of this method is the size of the sample needed. For small sizes (n < 1000) the 
plot becomes rugged and it is difficult to find the slope. We discourage from 
using this approach for small samples. It also gives only a poor estimate of a. 
Especially for a > 1.5, as the tails of the distribution become smaller, our es- 
timate is subject to a large error, since the plot significantly deviates from a 
straight line. See Fig. 4.3. 

5 C o n t i n u o u s - T i m e  R a n d o m  W a l k  

Continuous-Time Random Walk (CTRW) is a stochastic process with random 
waiting times Ti between successive jumps of random length Ri. During the 
recent years it has been studied extensively and applied to turbulence, trans- 
port in disordered or fractal media, intermittent chaotic systems and relaxation 
phenomena. For references see Klafter et al. (1993). The common feature of 
these applications is that they exhibit anomalous diffusion, which is manifested 
through non-linear time dependence of a mean square distance Rt reached by a 
particle up to the moment t (with the initial condition R0 = 0). 

For simplicity we restrict ourselves to one-dimensional walks. The first in- 
stantaneous jump of random length R1 is executed after a random waiting time 
T1. Then the second instantaneous jump R2 (i.e. jump of random length R2) 
is executed after time T2, etc. In general, the i-th jump Ri is dependent on 
its waiting time ~ ,  but the pairs (R~, Ti) are independent for different i's. See 
Fig. 5.1. The special case when Ri is independent of ~ is called the decoupled 
memory CTRW as opposed to the coupled one with Ri dependent on Ti. If we 
define the random variable Nt as the number of jumps in the time interval [0, t] 

k 

Nt = max{k: E T I  ~_ t), (5.1) 
i = 0  

then it is clear that the position Rt of the particle at the time t is equal to a 
random sum of N~ successive random jumps/Ei, i.e. 

N~ 
n,  = hi .  (5.2) 

i = 0  
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Fig.  4.3. Log-Tail test: plots of log(1 - F , (x))  against log x for S<~(1, O, O) with (a) 
a = 2.0; (b) a = 1.5; (c) a = 1.0; (d) a = 0.5. 

Note, t ha t  (5.2) holds also for a r andom walk when wait ing t ime intervals T / a r e  
n o n - r a n d o m  and take a constant  value. 

Many  authors  were interested in finding the asympto t i c  dis t r ibut ion of  the 
posi t ion Rn of  a particle at t ime t. We concentrated our research on the following 
formula  

( P" < x) = S (1,0, O)(x), (5.3) l im 
, - + ~  (tic--i-el.c2 

which is valid for 1 < a < 2 and r = E T i .  T/ has a density g(t) such t h a t  

limt-~oo ~ - . - 1  g(~) = 1, and Ri satisfies P ( R i  = 7}) = P(Ri = -7~)  = ½. The  
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Fig. 5.1. Two sample paths o] a coupled memory CTRW: plots of the distance Rt 
against time with (a) a = 1.2 and (b) o~ = 1.8. There are lOO jumps in the trajectories 
on both plots. Note the scale difference on both axes. 

normalizing constant in (5.3) is given by c2 = c~ 11~, where 

1 - a  

= r ( 2 -  4) cos( )' 

and F denotes the Euler Gamma function. This is a coupled memory CTRW. 
Fig. 5.1 presents two sample paths, with 100 jumps each, for two values of 4. For 
c~ = 1.2 the distribution ofbq, and thus of R~, has longer tails then for a = 1.8. 
This results in longer waiting times and jumps. A trajectory for a = 1.2 would, 
in general, make twice less jumps in the same time then a t rajectory for a --- 1.8. 

In our simulations, we let T/ have a Pareto(a,  1) distribution, i.e. g(t) = 
at  - ~ - 1 .  A random variable X having this distribution can be easily constructed 
using the inverse transform method 

- generate a random variable V distributed uniformly on (0, 1); 
- compute X = V - 1 / %  

We have chosen three values of a: 1.2, 1.5 and 1.8 in the permissible range 
of (1, 2). For every a we ran 25 simulations with 2000 trajectories each. Then 
for every a and every stopping time t = 500, 1000, 5000 we used the regression 
method of Koutrouvelis (1980), which is the most reliable among the known 
statistical methods (see Weron (1995b)), to estimate a and c~ (the distribution 
of Rt is symmetric). The results are summarized in Table 5.1. 

The distribution of Rt is symmetric, i.e. fl = 0, tt = 0, thus we est imated 
only a and ~r. For each parameter we give the mean, minimum, maximum and 
Mean Squarred Error i.e. 

1 ~'~(Oi - t~) 2, (5.4) M S E o  = n 
i = l  

of the estimates &k and #k obtained in 25 simulations (k = 1, ..., 25). 
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1.2 500 1.312 1.237 1.402 0.0139 1.629 1.530 1.739 0.3979 
1.2 1000 1.292 1.220 1.352 0.0101 1.530 1.444 1.639 0.2836 
1.2 5000 1.260 1.206 1.337 0.0047 1.364 1.321 1.412 0.1330 

1.5 500 1.539 1.450 1.623 0.0033 1.081 1.020 1.131 0.0073 
1.5 1000 1.519 1.436 1.601 0.0016 1.064 1.011 1.121 0.0048 
1.5 5000 1.513 1.464 1.586 0.0013 1.037 0.952 1.082 0.0022 

1.8 500 1.727 1.665 1.790 0.0064 0.807 0.781 0.835 0.0374 
1.8 1000 1.735 1.642 1.796 0.0058 0.823 0.791 0.859 0.0318 
1.8 5000 1.746 1.682 1.814 0.0040 0.840 0.819 0.871 0.0259 

T a b l e  5.1. Parameter estimates using the regression method o /a  = 1.2, 1.5, 1.8 and a 
describing the stable distribution o /Rt  at stopping times t = 500, 1000, 5000. 

As we have stated before, the smaller ~ the larger are the waiting t imes 
and jumps,  which is a consequence of longer tails of the distribution of T~. This 
behavior can be observed in Table 5.1. The stopping t ime t = 500 for ~ = 1.8 
is more or less equivalent to the stopping t ime t = 1000 for ~ = 1.2. This is 
the  reason the  convergence, to the  p o p u l a t i o n  values of ~ and  c~, for (~ = 1.8 
seems to  be  slower t h a n  for a = 1.2. Moreover,  for ~ = 1.2 the  t rue  values  are  
ove res t ima ted ,  for c~ = 1.8 u n d e r e s t i m a t e d  and  for c~ = 1.5 the  e s t i m a t o r s  give 
a lmos t  a perfect  ma tch .  This,  in fact ,  confirms wha t  o ther  au thor s  have recent ly  

observed  for different t a i l  thickness ( they  have only e s t i m a t e d  the  p a r a m e t e r  c~) 

of  the  d i s t r i bu t ion  of T/, see e.g. Zumofen et al. (1989). As ~ approaches  2 f rom 
below or  1 f rom above  the  convergence becomes  very slow. 
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