A Summary of the Simple Symmetric Random Walk on the Line.

Main objects.

$$
\begin{aligned}
& X_{1}, X_{2}, \ldots: \text { iid } \mathbb{P}\left(X_{k}= \pm 1\right)=\frac{1}{2} ; S_{0}=0, S_{n}=\sum_{k=1}^{n} X_{k} ; \\
& u_{2 n}=\mathbb{P}\left(S_{2 n}=0\right)=2^{-2 n}\binom{2 n}{n} \quad\left(\text { Note }: S_{2 n+1} \neq 0\right)
\end{aligned}
$$

$\tau=\min \left\{k \geq 1 \mid S_{k}=0\right\}:$ the time of the first return to zero;
$f_{2 n}=\mathbb{P}(\tau=2 n) ;$
$L_{2 n}=\max \left\{1 \leq k \leq 2 n \mid S_{k}=0\right\}$: the time of the last return to zero on $2 n$ steps;
$\pi_{2 n}=\#\left\{k \mid 1 \leq k \leq 2 n, S_{k-1}>0\right.$ and/or $\left.S_{k}>0\right\}$.

Main relations among the main objects.

$$
\begin{align*}
& \mathbb{P}\left(S_{1} \neq 0, \ldots, S_{2 n} \neq 0\right)=\mathbb{P}\left(S_{2 n}=0\right) \equiv u_{2 n} ; \tag{1}\\
& \mathbb{P}(\tau>2 n)=u_{2 n} \tag{2}\\
& f_{2 n}=u_{2(n-1)}-u_{2 n} \equiv \frac{u_{2(n-1)}}{2 n} ; \tag{3}\\
& \mathbb{P}\left(L_{2 n}=2 k\right)=u_{2 k} u_{2(n-k)} ; \tag{4}\\
& \mathbb{P}\left(\pi_{2 n}=2 k\right)=u_{2 k} u_{2(n-k)} . \tag{5}
\end{align*}
$$

Main results.

(1) The Ballot Theorem: If, in an election with two candidates A and B, the number of votes $N_{A}>N_{B}$ and votes are equally likely and independent, then the probability that A was always ahead of B is $\left(N_{A}-N_{B}\right) /\left(N_{A}+N_{B}\right)$.
(2) Two Arcsine Laws: if α is a random variable with $\operatorname{Beta}(1 / 2,1 / 2)$ distribution, then, as $n \rightarrow \infty$, both $\frac{L_{2 n}}{2 n}$ and $\frac{\pi_{2 n}}{2 n}$ converge in distribution to α.

Note: The $\operatorname{Beta}(p, q) \operatorname{pdf}$ is

$$
\frac{x^{p-1}(1-x)^{q-1}}{B(p, q)} ; B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}, \Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t .
$$

With $p=q=1 / 2$, this is

$$
\begin{equation*}
\frac{1}{\pi \sqrt{x(1-x)}}, x \in(0,1) . \tag{6}
\end{equation*}
$$

By direct computation, the corresponding cdf is

$$
\int_{0}^{x} \frac{d t}{\pi \sqrt{t(1-t)}}=\frac{2}{\pi} \sin ^{-1} \sqrt{x}, 0 \leq x \leq 1
$$

whence the arcsine law. The function (6) blows up near 0 and 1 and achieves min value at $1 / 2$ meaning that a typical path $\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ is NOT like a sine wave: it is (much) more likely to stay positive or negative for a long time that to switch frequently between positive and negative values.

Main tool: reflection principle.

Statement. If $k, m \in \mathbb{N}=\{1,2, \ldots\}, a, n \in \mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, and $n>a$, then the number of (right, up/down) paths on the integer grid \mathbb{Z}^{2} from (a, k) to (n, m) that hit zero is the same as the total number of (right, up/down) paths from ($a,-k$) to (n, m).

Two main ideas of the proof.

- Coupling: merge two paths once they meet;
- Bijection: to show that two finite sets have the same number of elements, establish a one-to-one correspondence between the elements of the sets.

The proof of the reflection principle: coupling of the two paths that start as mirror images of each other and meet on the x-axis establishes the bijection.

A possible line of thought: From reflection principle to the ballot theorem, then derive relation (1), from which (2) follows by definition of τ, and then (3) follows from $\mathbb{P}(\tau=2 n)=\mathbb{P}(\tau>2(n-1))-\mathbb{P}(\tau>2 n)$. The proof of (4) is similar to the proof of the reflection principle; (5) can be proved by induction. The arcsine laws follow by Stirling with $k, n \rightarrow \infty, k / n \rightarrow x$:

$$
\begin{aligned}
& u_{2 n} \sim \frac{1}{\sqrt{\pi n}}, u_{2 k} u_{2(n-k)} \sim \frac{1}{\pi \sqrt{k(n-k)}}, \\
& \sum_{2 k=\lfloor 2 n a\rfloor}^{\lfloor 2 n b\rfloor} u_{2 k} u_{2(n-k)} \sim \frac{1}{\pi n} \sum_{k=\lfloor n a\rfloor}^{\lfloor n b\rfloor} \frac{1}{\sqrt{(k / n)(1-(k / n))}} \rightarrow \int_{a}^{b} \frac{d x}{\pi \sqrt{x(1-x)}} .
\end{aligned}
$$

