Stochastic Ordinary Differential Equations: A Summary.

Basic setting:

o F=(Q,F,{F:}i>0,P), stochastic basis with the usual assumptions, that is, P-completeness of Fy and right
continuity of F;

() Feye=Fi, t 0.
e>0
e W =W(t),t>0, a Wiener process on F, that is, a continuous square-integrable martingale,

W(0) = 0, E((W(t) - W(s))2|]—'s) —t—s, t>s

e Measurable real-valued functions b = b(x), 0 = o(z), = € R, such that

T
/0 (Ib(F@)] + I (F(0) ) i < o (1)
for ever T' > 0 and every f € C(]0,T]), that is, f is continuous on [0, T].

The equation
dX =b(X)dt + o(X)dW (t), t > 0,
understood as the It6 integral equation

t t
X(t) = X(0) +/ b(X(s)) d8+/ o(X(s))dW(s), t >0, (2)
0 0
with X (0) € Fo, that is, X is Fo-measurable.
Basic regularity conditions:
0? €C(R); o*(z) >0 >0, x € R; (3)
b(z)| +|o(z)] < C, C >0, z€R. (4)

Note that (4) implies (1), and (1) is necessary to define the right-hand side of (2).
Two concepts of solution.

STRONG SOLUTION. Given the stochastic basis and the Wiener process, a strong solution X = X(¢) of (2) is
a continuous Fi-adapted process satisfying (2) with probability one for all ¢ > 0 [because X is continuous, the
exceptional set does not depend on time]. Strong uniqueness, also known as path-wise uniqueness, on [0, T] for
equation (2) means
IP( sup |X(t) — Y(t)] > o) =0
0<t<T

for every two solutions X = X (t) and Y = Y (¢) satisfying (2) with X (0) = Y(0) and with the same Brownian motion
w.

WEAK SOLUTION, sometimes also called martingale solution, is a stochastic basis satisfying the usual conditions,
a Brownian motion on this basis, and a continuous F;-adapted process X = X (t) satisfying (2) with probability one
for all ¢ > 0. Weak uniqueness on [0, 7] for equation (2) means that, as a random element with values in C([0,T]),
every weak solution has the same distribution.

LOCAL EXISTENCE of a solution means there is stopping time 7 on the underlying stochastic basis such that
P(7 > 0) = 1 and the solution exists on the stochastic interval {(w,?) : 0 <t < 7(w)}.

General results.

(1) Under the minimal regularity conditions (3), (4), there are only two possibilities: either (2) has a unique
strong solution on every stochastic basis with a given Brownian motion, or (2) does not have a unique strong
solution regardless of the choice of stochastic basis and Brownian motion; see [4, Section 2.1]. More generally,
there are 16 = 2* combinations to consider, namely existence and uniqueness for strong and weak solutions;
see [1, Table 1.1]. Of course, many of the combinations do not make sense and some are trivial.

(2) YAMADA-WATANABE THEOREM: Weak existence and strong uniqueness imply existence and uniqueness of
a strong solution [7, Theorem IX.1.7].



3)
(4)

DuaL YAMADA-WATANABE THEOREM: Weak uniqueness and strong existence imply existence and unique-
ness of a strong solution [A. S. Cherny (2001)].

A strong solution satisfies (X (s), 0 < s < t) C o(X(0),W(s) 0 < s < t), that is, the solution is
determined by the initial condition and the Wiener process; a weak solution satisfies o (X (0), W(s) 0 < s <
t) C J(X(s), 0<s< t), that is, the initial condition and the Wiener process might not be enough to
define the solution; cf. [6, Section 4.4]. In general, it is a separate, and hard, problem to establish equality
o(X(0),W(s), 0 <s<t)=0(X(s), 0<s<t)of the “input” and “output” sigma-algebras for a strong
solution of (2); cf. [5, Section 12.2].

Conditions (4) ensure non-explosion: every solution that exists locally can be continued to [0, 7] for all
non-random 7" > 0. Accordingly, any other condition that ensures non-explosion can be used instead of (4).
Two main examples are linear growth and monotonicity:

b(z)] + |o(2)| < C(1 + |z]), C >0, z €R; (5)
wb(z) + 0*(z) <C(1+2?), C >0, z €R. (6)
Linear growth implies monotonicity; taking b(z) = —a®, we see that it is possible to have monotonicity

without linear growth. For details and more examples, see [9, Chapter 10].

Basic existence and uniqueness results.

(1)
(2)

If (3) holds, then equation (2) has a unique weak solution as long as any of conditions for non-explosion,
such as (4), (5), or (6), hold (see [8, Theorem 5.6] for the proof under condition (4))
If the functions b and o are locally Lipschitz continuous, that is, for every R > 0 there exists a number L
such that

b(z) — b(y)| + o (@) — o(y)| < Lla — yl, ()
for all z,y with |z| < R, |y| < R, then equation (2) has a unique strong solution as long as any of conditions
for non-explosion, such as (4), (5), or (6), hold (see [3, Theorem V.1.1] for the proof under condition (6)). It
possible to relax (7) in a way similar to (6): for every R > 0 there exists a number L such that

(2 =) (b(z) = b(y)) +|o(x) — o (y)* < Llz —y/? 8)
for all z,y with |z| < R, |y| < R; cf. [3, Theorem V.1.1].

More sophisticated existence and uniqueness results.

(1)

(2)

If 02 > § > 0, then equation (2) has a unique weak solution as long as any of conditions for non-explosion,
such as (4), (5), or (6), hold (see [2] for the proof under condition (4)). In other words, no continuity of o>
is required.

If (3) holds and |o(z) — o(y)| < Ly/|x — y| for some L > 0 and all z,y € R, then equation (2) has a unique
strong solution as long as any of conditions for non-explosion, such as (4), (5), or (6), hold (see [10] for the
proof under condition (4)).

For a comprehensive collection of examples, see [1, Section 1.3].
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