
Stochastic Ordinary Differential Equations: A Summary.

Basic setting:

• F = (Ω,F , {Ft}t≥0,P), stochastic basis with the usual assumptions, that is, P-completeness of F0 and right
continuity of Ft ∩

ε>0

Ft+ε = Ft, t ≥ 0.

• W = W (t), t ≥ 0, a Wiener process on F, that is, a continuous square-integrable martingale,

W (0) = 0, E
((

W (t)−W (s)
)2|Fs

)
= t− s, t ≥ s.

• Measurable real-valued functions b = b(x), σ = σ(x), x ∈ R, such that∫ T

0

(
|b
(
f(t)

)
|+ |σ

(
f(t)

)
|2
)
dt < ∞ (1)

for ever T > 0 and every f ∈ C([0, T ]), that is, f is continuous on [0, T ].

The equation
dX = b(X)dt+ σ(X)dW (t), t > 0,

understood as the Itô integral equation

X(t) = X(0) +

∫ t

0

b
(
X(s)

)
ds+

∫ t

0

σ
(
X(s)

)
dW (s), t ≥ 0, (2)

with X(0) ∈ F0, that is, X0 is F0-measurable.

Basic regularity conditions:

σ2 ∈ C(R); σ2(x) ≥ δ > 0, x ∈ R; (3)

|b(x)|+ |σ(x)| ≤ C, C > 0, x ∈ R. (4)

Note that (4) implies (1), and (1) is necessary to define the right-hand side of (2).

Two concepts of solution.

Strong solution. Given the stochastic basis and the Wiener process, a strong solution X = X(t) of (2) is
a continuous Ft-adapted process satisfying (2) with probability one for all t > 0 [because X is continuous, the
exceptional set does not depend on time]. Strong uniqueness, also known as path-wise uniqueness, on [0, T ] for
equation (2) means

P
(

sup
0≤t≤T

|X(t)− Y (t)| > 0
)
= 0

for every two solutions X = X(t) and Y = Y (t) satisfying (2) with X(0) = Y (0) and with the same Brownian motion
W .

Weak solution, sometimes also called martingale solution, is a stochastic basis satisfying the usual conditions,
a Brownian motion on this basis, and a continuous Ft-adapted process X = X(t) satisfying (2) with probability one
for all t > 0. Weak uniqueness on [0, T ] for equation (2) means that, as a random element with values in C([0, T ]),
every weak solution has the same distribution.

Local existence of a solution means there is stopping time τ on the underlying stochastic basis such that
P(τ > 0) = 1 and the solution exists on the stochastic interval {(ω, t) : 0 ≤ t ≤ τ(ω)}.

General results.

(1) Under the minimal regularity conditions (3), (4), there are only two possibilities: either (2) has a unique
strong solution on every stochastic basis with a given Brownian motion, or (2) does not have a unique strong
solution regardless of the choice of stochastic basis and Brownian motion; see [4, Section 2.1]. More generally,
there are 16 = 24 combinations to consider, namely existence and uniqueness for strong and weak solutions;
see [1, Table 1.1]. Of course, many of the combinations do not make sense and some are trivial.

(2) Yamada-Watanabe Theorem: Weak existence and strong uniqueness imply existence and uniqueness of
a strong solution [7, Theorem IX.1.7].
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(3) Dual Yamada-Watanabe Theorem: Weak uniqueness and strong existence imply existence and unique-
ness of a strong solution [A. S. Cherny (2001)].

(4) A strong solution satisfies σ
(
X(s), 0 ≤ s ≤ t

)
⊆ σ

(
X(0),W (s) 0 ≤ s ≤ t

)
, that is, the solution is

determined by the initial condition and the Wiener process; a weak solution satisfies σ
(
X(0),W (s) 0 ≤ s ≤

t
)
⊆ σ

(
X(s), 0 ≤ s ≤ t

)
, that is, the initial condition and the Wiener process might not be enough to

define the solution; cf. [6, Section 4.4]. In general, it is a separate, and hard, problem to establish equality
σ
(
X(0),W (s), 0 ≤ s ≤ t

)
= σ

(
X(s), 0 ≤ s ≤ t

)
of the “input” and “output” sigma-algebras for a strong

solution of (2); cf. [5, Section 12.2].
(5) Conditions (4) ensure non-explosion: every solution that exists locally can be continued to [0, T ] for all

non-random T > 0. Accordingly, any other condition that ensures non-explosion can be used instead of (4).
Two main examples are linear growth and monotonicity:

|b(x)|+ |σ(x)| ≤ C(1 + |x|), C > 0, x ∈ R; (5)

xb(x) + σ2(x) ≤ C(1 + x2), C > 0, x ∈ R. (6)

Linear growth implies monotonicity; taking b(x) = −x3, we see that it is possible to have monotonicity
without linear growth. For details and more examples, see [9, Chapter 10].

Basic existence and uniqueness results.

(1) If (3) holds, then equation (2) has a unique weak solution as long as any of conditions for non-explosion,
such as (4), (5), or (6), hold (see [8, Theorem 5.6] for the proof under condition (4))

(2) If the functions b and σ are locally Lipschitz continuous, that is, for every R > 0 there exists a number L
such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ L|x− y|, (7)

for all x, y with |x| ≤ R, |y| ≤ R, then equation (2) has a unique strong solution as long as any of conditions
for non-explosion, such as (4), (5), or (6), hold (see [3, Theorem V.1.1] for the proof under condition (6)). It
possible to relax (7) in a way similar to (6): for every R > 0 there exists a number L such that

(x− y)
(
b(x)− b(y)

)
+ |σ(x)− σ(y)|2 ≤ L|x− y|2 (8)

for all x, y with |x| ≤ R, |y| ≤ R; cf. [3, Theorem V.1.1].

More sophisticated existence and uniqueness results.

(1) If σ2 ≥ δ > 0, then equation (2) has a unique weak solution as long as any of conditions for non-explosion,
such as (4), (5), or (6), hold (see [2] for the proof under condition (4)). In other words, no continuity of σ2

is required.
(2) If (3) holds and |σ(x)− σ(y)| ≤ L

√
|x− y| for some L > 0 and all x, y ∈ R, then equation (2) has a unique

strong solution as long as any of conditions for non-explosion, such as (4), (5), or (6), hold (see [10] for the
proof under condition (4)).

For a comprehensive collection of examples, see [1, Section 1.3].
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