
Reproducing Kernel Hilbert Space (RKHS)1

The RKHS story is connecting the following objects:

• A non-empty set S;
• A complex-valued function K = K(t, s), t, s ∈ S;
• A Hilbert space H with inner product (·, ·)H and corresponding norm ‖ · ‖H , such that every
element of H is a complex-valued function on S.

Definitions

(1) A kernel K is a complex-valued, Hermitian, positive semi-definite function on S × S:

K(t, s) = K(s, t),
N∑

k,m=1

K(tk, tm)ak am ≥ 0, tk ∈ S, ak ∈ C. (1.1)

(2) A reproducing kernel K on the Hilbert space H is a kernel such that
• For even s ∈ S, the function Kt : s 7→ K(t, s) is an element of H;
• The equality f(s) = (f,Ks)H holds for every f ∈ H.

(3) The Hilbert space H is called a reproducing kernel Hilbert space (RKHS) if there
exists a reproducing kernel on H.

Theorem [Aronszajn (1950), Bergman (1950)] The Hilbert space H is a RKHS if and only if,
for every s ∈ S, the (linear) functional f 7→ f(s) is bounded on H: for every s ∈ S, there exists a
number C = C(s) such that, for all f ∈ H, |f(s)| ≤ C(s)‖f‖H .
Proof. If H is a RKHS with kernel K, then f(s) = (f,Ks), and, by the Cauchy-Schwarz

inequality, |f(s)| ≤ ‖f‖H‖Ks‖H . Note also that ‖Ks‖2H =
(
K(·, s), K(·, s)

)
H

= ‖K(s, s)‖2H . If
the point-wise evaluation is a continuous functional, then, by the Riesz representation theorem,
f(s) = (f, gs)H for some gs ∈ H, and then K(t, s) = gs(t).

Corollaries.

(1) For every RKHS H, the corresponding reproducing kernel is unique; if H is separable, with
an orthonormal basis φm, m ≥ 1, then

K(t, s) =
∞∑

m=1

φm(t)φm(s). (1.2)

(2) In a RKHS, strong convergence implies point-wise convergence.
(3) A linear subspace of a RKHS is a RKHS.

(4) If a RKHS H is a subspace of a bigger Hilbert space H̃, then, for f ∈ H̃, the function
x 7→

(
f,Kx

)
H̃

is the orthogonal projection of f onto H.
(5) If, for a countable collection tk ∈ S, the collection of functions Ktk is an orthogonal basis in

the RKHS H, then, for every f ∈ H,

f(s) =
∑
k

f(tk)
Ktk(s)

K(tk, tk)
. (1.3)

This observation leads to connections with frames and wavelets.

Examples.

(1) Moore-Aronszajn theorem: If K is a kernel (Hermitian positive semi-definite function),
then the closure of the linear span of the functions f(t) = K(t, ·) with respect to the norm
generated by the inner product

(
f(t), f(s)

)
= K(t, s) is a RKHS.

(2) If H̃ is a Hilbert space and A is a bounded operator on H̃ such that (Ax, y)H̃ = (x,Ay)H̃
and (Ax, x)H̃ ≥ 0, then (taking S = H̃), K(x, y) = (Ax, y)H̃ is a reproducing kernel, and

the corresponding RKHS is
√
A(H̃), where

√
A is the non-negative symmetric square root

of A.
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(3) L2((0, 1)) is NOT a RKHS because the functions in L2((0, 1)) cannot be evaluated point-wise,
and even a continuous function can be changed a lot near one point without changing the
L2 norm that much. The ultimate technicality, though, is that L2((0, 1)) is not a collection
of function but rather a collection of equivalence classes. Constructing a Hilbert space of
(bona fide) functions that is not a RKHS is much harder (but possible).

(4) Ḣ1((0, 1)) = {f ∈ H1((0, T )) : f(0) = 0} is a RKHS, because f(t) =
∫ t

0
f ′(r) dr and so

|f(t)|2 ≤
∫ 1

0
|f ′(r)|2 dr. The corresponding reproducing kernel is K(t, s) = min(t, s): this is

a re-statement of the original Cameron-Martin theorem.
(5) The space A2(G) of functions f(z) = u(x, y) + iv(x, y), i =

√
−1, analytic in a bounded

open sub-set G of the complex plain, with norm ‖f‖2 =
∫∫

G
|f(z)|2 dxdy is a RKHS because

πr2|f(z0)|2 ≤
∫∫

|z−z0|<r
|f(z)|2 dxdy. This is true because the function |f(z)|2 = u2(x, y) +

v2(x, y) is sub-harmonic: ∆|f(z)|2 = 2|∇u|2 + 2|∇v|2 ≥ 0, which, in turn is true because
the function f is harmonic: ∆u = ∆v = 0. The corresponding reproducing kernel is called
the Bergman kernel of the domain G.

(6) The space Bν of functions f from L2(R) for which the Fourier transform

f̂(y) =
1√
2π

∫
R
e−iytf(t) dt (1.4)

is supported in a fixed interval [−ν, ν] is a RKHS; the reproducing kernel is K(t, s) =
(ν/π) sinc(ν(t−s)), where sinc(x) = sin(x)/x. Moreover, taking tk ≤ kπ/ν, k = 0,±1,±2, . . . ,
equality (1.3) becomes the famous sampling theorem

f(t) =
∑
k

f(tk) sinc(ν(t− tk)).

The main point here: by direct computation, the Fourier transform of an indicator function
f1(t) = 1(−T < t < T ) is a multiple of the sinc function

f̂1(y) =
1√
2π

∫ 1

−1

e−iyt dt =

√
2

π

sin yT

y
,

so that, by duality, the Fourier transform of
√
2/π ν sinc(νt) is exactly 1(|y| < ν); as a result,

in the frequency domain, the reproducing property

f(t) =

∫
R
f(s)K(t, s) ds

becomes a trivial identity f̂(y) = f̂(y) and (1.4) becomes the Fourier series expansion of f̂ .

Historical comments. Originally from Poland, Nachan Aronszajn2 (1907–1980) had two Ph.D-s.:
one from the University of Warsaw and one from the University of Paris under M. Fréchet; after coming
to America, he settled at the University of Kansas (1951-77).

Stefan Bergman (1895–1977) was born in the Polish part of the Russian Empire, got his Ph.D.
from the University of Berlin under Richard von Mises, later worked in Siberia (Tomsk, 1934-36), Georgia
(Tbilisi, 1936-37), and then moved to the US, where he spent some time on the East Coast (MIT, Harvard,
Brown, etc.) and the West Coast (Stanford 1952-72); there used to be a special prize in his name from the
American Mathematical Society.

While at the University of Chicago, the American mathematician Eliakim Hastings Moore (1862–

1932) supervised 31 Ph.D. students, including G. Birkhoff and O. Veblen; he is also the Moore in the

Moore-Penrose (generalized) inverse of a matrix.

2pronounced close to aronshine


