On the Probability that k Positive Integers are Relatively Prime

J. E. Nymann
Department of Mathematics, University of Texas at El Paso, El Paso, Texas 79999

Communicated by H. B. Mann
Received October 22, 1970

Let $P_{k}(n)$ denote the probability that k positive integers, chosen at random from $\{1,2, \ldots, n\}$, are relatively prime. It is shown that $P_{k}(n)=1 / \zeta(k)+O(1 / n)$ if $k \geqslant 3$ and $P_{2}(n)=1 / \zeta(2)+O(\log n / n)$, where ζ denotes the Riemann ζ-function. Hence for $k \geqslant 2, \lim _{n \rightarrow \infty} P_{k}(n)=1 / \zeta(k)$. The same problem is studied using probability distributions on the positive integers other than the uniform distribution on $\{1,2, \ldots, n\}$ as was used above. The following result, with examples, is given: Let f be a probability density function, defined on the cartesian product of the set of positive integers with itself k times, which has the following property: if $\left(m_{1}, \ldots, m_{k}\right)=d$, then $f\left(m_{1}, \ldots, m_{k}\right)=g(d) f\left(m_{1} / d, \ldots, m_{k} / d\right)$ for some function g defined on the positive integers. Then the probability that a k-tuple of positive integers chosen from this distribution is relatively prime is $1 / \Sigma_{d=1}^{\infty} g(d)$.

1. The following notation will be used:
$Z_{k}(t)=$ number of k-tuples of positive integers less than or equal to t which are relatively prime.
$P_{k}(n)=$ probability that k positive integers, chosen at random from $\{1,2, \ldots, n\}$ are relatively prime.
$\zeta=$ Riemann ζ-function.
Lemma. For $t \geqslant 1, Z_{k i}(t)=t^{k} / \zeta(k)+O\left(t^{k-1}\right)$ if $k \geqslant 3$ and $Z_{2}(t)=$ $t^{2} / \zeta(k)+O(t \log t)$.

Proof. Note that

$$
\begin{equation*}
Z_{k}(t)=\sum_{\substack{\left(m_{1}, \ldots, m_{k}\right)=1 \\ 1 \leqslant m_{i} \leqslant t}} 1 \tag{1}
\end{equation*}
$$

Copyright © 1972 by Academic Press, Inc.
All rights of reproduction in any form reserved.
and

$$
\begin{equation*}
[t]^{k}=\sum_{\substack{1 \leqslant m_{i} \leqslant t \\(i=1, \ldots, k)}}=\sum_{\substack{1 \leqslant a \leqslant t}} \sum_{\substack{\left(m_{1}, \ldots, m_{k}\right)=a \\ 1 \leqslant m_{i} \leqslant t}} 1 \tag{2}
\end{equation*}
$$

Now $\left(m_{1}, \ldots, m_{k}\right)=d$ if and only if $\left(m_{1} / d, \ldots, m_{k} / d\right)=1$. Hence there is a 1-1 correspondence between k-tuples $\left\langle m_{1}, \ldots, m_{k}\right\rangle$ with $\left(m_{1}, \ldots, m_{k}\right)=d$ and $1 \leqslant m_{i} \leqslant t$ and k-tuples $\left\langle m_{1}{ }^{\prime}, \ldots, m_{k}{ }^{\prime}\right\rangle$ with $\left(m_{1}{ }^{\prime}, \ldots, m_{k}{ }^{\prime}\right)=1$ and $1 \leqslant m_{i}^{\prime} \leqslant t / d$. However there are exactly $Z_{k}(t / d)$ of the latter. Hence from (1) and (2) we obtain

$$
\begin{equation*}
[t]^{k}=\sum_{1 \leqslant d \leqslant t} Z_{k}(l / d) \tag{3}
\end{equation*}
$$

Applying one of the Moebius inversion formulas [2; p. 104] to (3) yields

$$
\begin{aligned}
Z_{k}(t) & =\sum_{1 \leqslant d \leqslant t} \mu(d)[t / d]^{k} \\
& =\sum_{1 \leqslant d \leqslant t} \mu(d)[t / d+O(1)]^{k}
\end{aligned}
$$

Hence it is easily seen that

$$
\begin{align*}
Z_{k}(t)= & t^{k} \sum_{1 \leqslant d \leqslant t} \mu(d) / d^{k}+t^{k-1} O\left(\sum_{1 \leqslant d \leqslant t} \mu(d) / d^{k-1}\right)+\cdots \\
& +t O\left(\sum_{1 \leqslant d \leqslant t} \mu(d) / d\right)+O\left(\sum_{1 \leqslant d \leqslant t} 1\right) \tag{4}
\end{align*}
$$

We consider the terms in this equation separately. We have

$$
\sum_{1 \leqslant d \leqslant t} \mu(d) / d^{k}=\sum_{d=1}^{\infty} \mu(d) / d^{k}-\sum_{d=[t]+1}^{\infty} \mu(d) / d^{k}
$$

Now it is well known that $\sum_{d=1}^{\infty} \mu(d) / d^{k}=1 / \zeta(k)$. Also

$$
\left|\sum_{d-[t]+1}^{\infty} \mu(d) / d^{k}\right|<\sum_{d=[t]+1}^{\infty} 1 / d^{k}<\int_{[t]}^{\infty} d x / x^{k}=O\left(1 / t^{k-1}\right) .
$$

Hence the first term of (4) is $t^{k} / \zeta(k)+O(t)$. To estimate the other terms we observe

$$
\begin{gathered}
\sum_{1 \leqslant d \leqslant t} \mu(d) / d^{i}=O(1) \quad \text { if } \quad i>1 \\
\left|\sum_{1 \leqslant d \leqslant t} \mu(d) / d\right| \leqslant \sum_{1 \leqslant d \leqslant t} 1 / d=\log t+\gamma+O(1 / t)(\gamma \text { is Euler's constant })
\end{gathered}
$$

and

$$
\sum_{1 \leqslant d \leqslant t} 1=O(t)
$$

From these observations the result is easily seen to follow.
The proof given above is modeled after the derivation of the formula for the summatory function of the Euler ϕ-function given in [2].

Theorem 1. $P_{k}(n)=1 / \zeta(k)+O(1 / n)$ if $k \geqslant 3$ and $P_{2}(n)=$ $1 / \zeta(2)+O(\log n / n)$. Hence $\lim _{n \rightarrow \infty} P_{k}(n)=1 / \zeta(k)$.

Proof. This follows immediately from the lemma together with the simple observation $P_{k}(n)=Z_{k}(n) / n^{k}$.

The statement $\lim _{n \rightarrow \infty} P_{k}(n)=1 / \zeta(k)$ may roughly be interpreted as saying that if k positive integers are chosen at random, the probability that they are relatively prime is $1 / \zeta(k)$. This, however, is not precise since there is no uniform distribution on the positive integers. What we have considered above is the uniform distribution on $\{1,2, \ldots, n\}$ and then taken the limit as $n \rightarrow \infty$. In the following section we consider the same type of problem using other probability distributions on the positive integers.
2. In the following, N will denote the set of positive integers and f will denote a joint probability density function defined on the cartesian product of N with itself k times.

Definition. We will say f satisfies condition A if there exists a function g defined ou N such that whenever $\left(m_{1}, \ldots, m_{k}\right)=d$,

$$
f\left(m_{1}, \ldots, m_{k}\right)=g(d) f\left(m_{1} / d, \ldots, m_{k} / d\right)
$$

Theorem 2. If f satisfies condition A, then the probability P_{k}, that a a k-tuple of positive integers chosen from this distribution is relatively prime, is $1 / \sum_{d=1}^{\infty} g(d)$.

Proof. Clearly $P_{k}=\sum\left(m_{1} \ldots ., m_{k}\right)=1, f\left(m_{1}, \ldots, m_{k}\right)$. Now

$$
\begin{aligned}
1 & =\sum_{d=1}^{\infty} \sum_{\left(m_{1}, \ldots, m_{k}\right)=d} f\left(m_{1}, \ldots, m_{k}\right)=\sum_{d=1}^{\infty} \sum_{\left(m_{1}, \ldots, m_{k}\right)=d} g(d) f\left(m_{1} / d, \ldots, m_{k} / d\right) \\
& =\sum_{d=1}^{\infty} g(d) \sum_{\left(m_{1}^{\prime}, \ldots, m_{k}\right)=1} f\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)=\sum_{d=1}^{\infty} g(d) P_{k}
\end{aligned}
$$

Hence $P_{k}=1 / \sum_{d=1}^{\infty} g(d)$.

Example 1. For $s>2$ define f_{s} by $f_{s}\left(m_{1}, m_{2}\right)=c /\left(m_{1}+m_{2}\right)^{s}$ where $c=[\zeta(s-1)-\zeta(s)]^{-1}$. To show f_{s} is a probability density function we observe that the number of ways n can be written as a sum of two positive integers is $n-1$. Hence

$$
\begin{aligned}
\sum_{m_{2}=1}^{\infty} \sum_{m_{1}=1}^{\infty} c /\left(m_{1}+m_{2}\right)^{s} & =c \sum_{n=2}^{\infty}(n-1) / n^{s}=c \sum_{n=2}^{\infty} 1 / n^{s-1}-c \sum_{n=2}^{\infty} 1 / n^{s} \\
& =c[\zeta(s-1)-\zeta(s)]=1
\end{aligned}
$$

Now f_{s} satisfies condition A with $g(d)=1 / d^{s}$.
Hence, by Theorem 2, the probability that a pair of positive integers chosen from this distribution is relatively prime is $1 / \zeta(s)$.

Example 2. For $s>1$ define f_{s} by

$$
f_{s}\left(m_{1}, \ldots, m_{k}\right)=\zeta^{-k}(s)\left(m_{1} \cdot m_{2} \cdots m_{k}\right)^{-s}
$$

It is easy to verify that f_{s} is a probability density function and that f_{s} satisfies condition A with $g_{s}(d)=1 / d^{k s}$. If we let $q_{k}(s)$ denote the probability that a k-tuple of positive integers chosen from this distribution is relatively prime, then Theorem 2 tells us that $q_{k}(s)=1 / \zeta(k s)$.

Notice that in Example 1 the underlying probability measure cannot be factored as a product measure, while in Example 2 the underlying probability measure is a product measure (i.e., in Example 2 we have independence while in Example 1 we do not).
3. Comparing the result in Section 1 with the result in Example 2 of Section 2 we observe

$$
\lim _{n \rightarrow \infty} P_{k}(n)=\lim _{s \rightarrow 1^{+}} q_{k}(s)=1 / \zeta(k)
$$

This does not appear to be coincidental. Let P_{s} denote the probability distribution on N with density function $f_{s}(m)=m^{-s} / \zeta(s)$. Golomb [1] discusses the "limit distribution" P_{1} obtained by taking suitable limits as $s \rightarrow 1$ in P_{s}. He shows that the distributions P_{s} can be used to approximate the nonexistant uniform distribution on N in much the same way that the uniform distribution on $\{1,2, \ldots, n\}$ can be used to approximate the same thing. With this in mind it seems plausible that the result $\lim _{n \rightarrow \infty} P_{k}(n)=1 / \zeta(k)$, obtained in Section 1, could be obtained from the results in Section 2 and the above observations. At present the author is not able to do this rigorously.

References

1. S. W. Golomb, A Class of Probability Distributions on the Integers, J. Number Theory 2 (1970), 189-192.
2. H. Rademacher, "Lectures on Elementary Number Theory," Blaisdell Publishing Co., New York, 1967.
