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Let P&z) denote the probability that k positive integers, chosen at random 
from {I, 2,..., n}, are relatively prime. It is shown that P&z) = 1/5(k) + 0(1/n) 
if k > 3 and P&z) = l/5(2) + O(log n/n), where 5 denotes the Riemann 
C-function. Hence for k > 2, lb+,, P,(n) = l/&k). The same problem 
is studied using probability distributions on the positive integers other than 
the uniform distribution on {l, 2,..., n} as was used above. The following result, 
with examples, is given: Let f  be a probability density function, defmed on the 
cartesian product of the set of positive integers with itself k times, which has the 
following property: if (ml ,..., mk) = d, then f(ml ,..., mJ = g(d).f(m,/d ,..., m,/d) 
for some function g defined on the positive integers. Then the probability that 
a k-tuple of positive integers chosen from this distribution is relatively prime 
is UCE, g(d). 

1. The following notation will be used: 

&(t) = number of k-tuples of positive integers less than or equal to t 
which are relatively prime. 

P,(n) = probability that k positive integers, chosen at random from 
11, z..., n} are relatively prime. 

5 = Riemann C-function. 

LEMMA. For t > 1, &(t) = t’“/c(k) + O(tk-l) if k > 3 and .&(t) = 
t2/&V + O(t log t). 

Proof. Note that 

&c(t) = c 1 (1) 
wzl,....“L)=l 

l<WQ.G 
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and 

[t]” = c = c 2 1 
1<VQ<t l<d<t (ml,...,m~)=d 

fi=l,...,k) 1<?iQ<t 

(2) 

Now (ml ,..., mk) = d if and only if (ml/d,..., m,/d) = 1. Hence there 
is a l-1 correspondence between k-tuples (ml ,..., ms> with (ml ,..., mk) = d 
and 1 < mi < t and k-tuples (ml’,..., m,‘> with (ml’ ,..., mk’) = 1 and 
1 < mi’ < t/d. However there are exactly Z,(t/d) of the latter. Hence 
from (1) and (2) we obtain 

itI” = 1 T&/4 (3) 
l<d<t 

Applying one of the Moebius inversion formulas [2; p. 1041 to (3) yields 

= l<;<t /4Wld + N)l”. 
. . 

Hence it is easily seen that 

Z,(t) = t” C p(d)/d” + r-l0 ( c p(d)/dk-‘) + a.* 
l<d<t l<d<t 

+ t O Cl<?<, p(d)ldj + O cl<;<, 1). . . . . (4) 

We consider the terms in this equation separately. We have 

c /44/d’” = f /4d)ldk - f p(d)/dk. 
l<d<t d=l d=[t]+l 

Now it is well known that CzEI p(d)/dk = l/[(k). Also 

I ,=i+l i-441dk I < 5 l/d” < In dx/xk = O(l/tk--l). 
d=[t]+l [$I 

Hence the first term of (4) is P/[(k) + O(t). To estimate the other terms we 
observe 

,<Tct p(d)/di = O(1) if i > I, 
. . 

I ,<;lt d4ld ( G C l/d = 1 og t + y + O(l/t)(y is Euler’s constant), 
l<d<t 
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and 

,Z<, 1 = W). 
. . 

From these observations the result is easily seen to follow. 
The proof given above is modeled after the derivation of the formula 

for the summatory function of the Euler $-function given in [2]. 

THEOREM 1. P,(n) = l/<(k) + 0(1/n) if k > 3 and P&) = 
l/5(2) + O(log n/n). Hence lim,,, P,(n) = 1/5(k). 

Proof. This follows immediately from the lemma together with the 
simple observation Pk(n) = Z,(n)/n”. 

The statement limn+m P,(n) = l/<(k) may roughly be interpreted as 
saying that if k positive integers are chosen at random, the probability 
that they are relatively prime is l/{(k). This, however, is not precise since 
there is no uniform distribution on the positive integers. What we have 
considered above is the uniform distribution on {1,2,..., n} and then taken 
the limit as n -+co. In the following section we consider the same type of 
problem using other probability distributions on the positive integers. 

2. In the following, N will denote the set of positive integers and f 
will denote a joint probability density function defined on the Cartesian 
product of N with itself k times. 

DEFINITION. We will say f satisfies condition A if there exists a function 
g defined on N such that whenever (m, ,..., ms) = d, 

f(m 1 ,..., mk) = &Of h/d, . . . . wh0. 

THEOREM 2. If f satisfies condition A, then the probability P, , that a 
a k-tuple of positive integers chosen jiom this distribution is relatively 
prime, is l/XL1 g(d). 

Proof. Clearly Pk = I%, ,..., ,,+f h ,... , ml. Now 

C f(m,,...,m,) = f 
a=1 (ml.....m+d 

d-l (ml..~k,=d g(d)f (mlldw mkld) 

= El g(d) C f (ml’,..., Iytk’) = i g(d) pk . 
hl'....,m~')=l d=l 

Hence Pr, = l/Cy-r g(d). 
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EXAMPLE 1. For s > 2 define fs by f&n, , mz) = c/(ml + rn$ where 
c = [{(s - 1) - c(s)]-I. To show f8 is a probability density function we 
observe that the number of ways n can be written as a sum of two positive 
integers is n - 1. Hence 

Nowf, satisfies condition A with g(d) = l/d”. 
Hence, by Theorem 2, the probability that a pair of positive integers 

chosen from this distribution is relatively prime is l/<(s). 

EXAMPLE 2. For s > 1 define,f, by 

f&h ,.-., ml,) = ~-“(s)(ml * m, --- mJ+. 

It is easy to verify that fs is a probability density function and that fs 
satisfies condition A with g,(d) = I/d’““. If we let q&) denote the 
probability that a k-tuple of positive integers chosen from this distribution 
is relatively prime, then Theorem 2 tells us that q&s) = l/<&s). 

Notice that in Example 1 the underlying probability measure cannot be 
factored as a product measure, while in Example 2 the underlying 
probability measure is a product measure (i.e., in Example 2 we have 
independence while in Example 1 we do not). 

3. Comparing the result in Section 1 with the result in Example 2 
of Section 2 we observe 

This does not appear to be coincidental. Let P, denote the probability 
distribution on N with density function fs(m) = m-8/&v). Golomb [l] 
discusses the “limit distribution” P, obtained by taking suitable limits 
as s + 1 in P, . He shows that the distributions P, can be used to approxi- 
mate the nonexistant uniform distribution on N in much the same way 
that the uniform distribution on (1,2,..., n} can be used to approximate 
the same thing. With this in mind it seems plausible that the result 
limndm P&z) = l/[(k), obtained in Section 1, could be obtained from the 
results in Section 2 and the above observations. At present the author is 
not able to do this rigorously. 
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