A Summary of Random Variables¹

Starting point: A probability space $(\Omega, \mathcal{F}, \mathbb{P})$; Ω is the sample space, \mathcal{F} is the collection of all events, \mathbb{P} is the probability (also known as the probability measure or probability function).

Definition: a random variable ξ is a *measurable* real-valued function on Ω . That is, for every $\omega \in \Omega$, $\xi(\omega)$ is a real number, and, for all $-\infty < a < b < +\infty$, $\{\omega : a < \xi(\omega) < b\} \in \mathcal{F}$.

Fact: If ξ is a random variable and g = g(x) is a measurable real-valued function (continuous or Riemann integrable on every bounded interval will work), then $g(\xi)$ is a random variable.

Definition: the cumulative distribution function (cdf) of the random variable ξ is the function

$$F_{\xi}(x) = \mathbb{P}(\xi \le x).$$

The following properties of the cdf follow from the properties of the probability measure \mathbb{P} :

- $\lim_{x \to -\infty} F_{\xi}(x) = 0$, $\lim_{x \to +\infty} F_{\xi}(x) = 1$, and, for x < y, $F_{\xi}(x) \le F_{\xi}(y)$;
- $F_{\xi}(x) = F_{\xi}(x^{+}), F_{\xi}(x^{-})$ exists, and $F_{\xi}(x) F_{\xi}(x^{-}) = \mathbb{P}(\xi = x).^{2}$

Definition: For $\alpha \in (0,1)$, the 100α %-quantile (or percentile) is a number ξ_{α} such that $\mathbb{P}(\xi \leq \xi_{\alpha}) = \alpha$. The function $\alpha \mapsto \xi_{\alpha} = \min\{x \in \mathbb{R} : F_{\xi}(x) \geq \alpha\}$ is called the quantile function. If the inverse function F_{ξ}^{-1} exists, then $\xi_{\alpha} = F_{\xi}^{-1}(\alpha)$. Quartiles correspond to $\alpha = 0.25, 0.5, 0.75$, and $\xi_{0.5}$ is called the median. There is a alternative defini-

Quartiles correspond to $\alpha = 0.25, 0.5, 0.75$, and $\xi_{0.5}$ is called the median. There is a alternative definition of the median, as a number m_{ξ} such that $\mathbb{P}(\xi \leq m_{\xi}) \geq 1/2$ and $\mathbb{P}(\xi \geq m_{\xi}) \geq 1/2$; with this definition, m_{ξ} might not be unique.

Definition: random variable ξ is called

- discrete if $\xi \in \{a_1, a_2, \ldots\}$; the collection of numbers $p_{\xi}(k) = \mathbb{P}(\xi = a_k)$ is called probability mass function (pmf) of ξ .
- continuous if F_{ξ} is a continuous function for all $x \in \mathbb{R}$ (equivalently, $\mathbb{P}(\xi = x) = 0$ for every $x \in \mathbb{R}$;
- a continuous random variable ξ is called absolutely continuous if there exists an non-negative integrable function $f_{\xi} = f_{\xi}(x)$, called the probability density function (pdf) of ξ , such that, for all $x \in \mathbb{R}$,

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) \, dy.$$

• a continuous random variable is called **singular** if it is not absolutely continuous. The main example is a random variable that is uniform on the *Cantor set* in [0, 1]; the corresponding cdf is sometimes called the Cantor (or devil's) staircase.

Fact: every random variable has a *unique* representation as a sum of a discrete, an absolutely continuous, and a singular random variables.

Definition: The expected value $\mathbb{E}(\xi)$ of a random variable ξ is the number

$$\mathbb{E}(\xi) = -\int_{\infty}^{0} F_{\xi}(x) \, dx + \int_{0}^{+\infty} \left(1 - F_{\xi}(x)\right) \, dx,$$

provided at least one of the integrals is finite.

The following properties of the expected value follow from the definition, but not always in an easy way; because of that, other equivalent definitions exist.

- $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}(\xi) + b\mathbb{E}(\eta)$ [a, b are real numbers; ξ, η are random variables];
- $\mathbb{E}(1) = 1;$
- If $\xi \leq \eta$, then $\mathbb{E}(\xi) \leq \mathbb{E}(\eta)$; in particular, if $|\xi| \leq c$, then $\mathbb{E}|\xi| \leq c$.

¹Sergey Lototsky, USC

$${}^{2}f(x^{\pm}) = \lim_{0 < \varepsilon \to 0} f(x \pm \varepsilon).$$

- If $\xi \ge 0$, then $\mathbb{E}(\xi) = \int_0^\infty \mathbb{P}(\xi > x) dx$.
- If A is an event, then 1_A or χ_A denotes the indicator function of A, which is the random variable equal to 1 if $\omega \in A$ and zero if $\omega \notin A$; then $\mathbb{E}(1_A) = \mathbb{P}(A)$.
- $|\mathbb{E}(\xi)| \leq \mathbb{E}|\xi|$; more generally, if g = g(x) is a *convex* function, then $g(\mathbb{E}(\xi)) \leq \mathbb{E}(g(\xi))$: Jensen's inequality.
- The Law/Lemma/Theorem of the unconscious statistician:

$$\mathbb{E}g(\xi) = \sum_{k} g(a_k) \mathbb{P}(\xi = a_k) \text{ (discrete } \xi);$$
$$\mathbb{E}g(\xi) = \int_{-\infty}^{+\infty} g(x) f_{\xi}(x) dx \text{ (absolutely continuous } \xi).$$

Definition: for a random variable ξ ,

- characteristic function $\varphi_{\xi}(t) = \mathbb{E}\left(e^{\sqrt{-1}t\xi}\right), t \in \mathbb{R}$ [cf. Fourier Transform];
- moment generating function $M_{\xi}(\lambda) = \mathbb{E}\left(e^{\lambda \xi}\right), \ \lambda \in \mathbb{R}$ [cf. Laplace Transform];
- moment of order k = 1, 2, ... is $\mathbb{E}(\xi^k)$;
- absolute moment of order p > 0 is $\mathbb{E}|\xi|^p$;
- central moment of order k = 2, 3, 4, ... is $\mathbb{E}(\xi \mu_{\xi})^k$, where $\mu_{\xi} = \mathbb{E}(\xi)$. In particular, variance $\sigma_{\xi}^2 = \operatorname{Var}(\xi) = \mathbb{E}(\xi \mu_{\xi})^2$ is the central moment of order 2; skewness is *normalized* central moment of order 3, and kurtosis is normalized central moment of order 4. Standard deviation σ_{ξ} is the square root of the variance.

Note:

- $|\varphi_{\xi}(t)| \leq 1$ for all $t \in \mathbb{R}$; if $\varphi_{\xi}(t) = \varphi_{\eta}(t)$ for all $t \in \mathbb{R}$, then $F_{\xi}(x) = F_{\eta}(x)$ for all x: the reason for "characteristic";
- $M_{\xi}(\lambda)$ might be infinite for all $\lambda \neq 0$; if $M_{\xi}(\lambda)$ is finite for all λ near zero, then $M_{\xi}^{(k)}(0) = \mathbb{E}(\xi^k)$ (k-th derivative at zero is k-th moment: the reason for "moment generating");
- $\operatorname{Var}(a\xi + b) = a^2 \operatorname{Var}(\xi)$ for all real numbers a, b;
- If ξ represents a physical quantity and is measured in physical units (time, distance, etc.), then the mean and the standard deviation of ξ (if defined) are measured in the same units, but skewness and kurtosis are always dimensionless.

Definition: Random variables ξ and η are called independent if the events $\{\omega : \xi(\omega) \leq a\}$ and $\{\omega : \eta(\omega) \leq b\}$ are independent for all $a, b \in \mathbb{R}$. Joint independence of a countable collection of random variables is defined similarly, via joint independence of the corresponding events. A countable collection ξ_1, ξ_2, \ldots of random variables is called iid (independent and identically distributed) if the random variables are jointly independent and have the same cdf.

Facts: if ξ and η are independent, then $\varphi_{\xi+\eta}(t) = \varphi_{\xi}(t)\varphi_{\eta}(t), t \in \mathbb{R}$, and, provided the corresponding objects are finite,

$$\mathbb{E}(\xi\eta) = \mathbb{E}(\xi)\mathbb{E}(\eta), \ \operatorname{Var}(\xi+\eta) = \operatorname{Var}(\xi) + \operatorname{Var}(\eta); M_{\xi+\eta}(\lambda) = M_{\xi}(\lambda)M_{\eta}(\lambda).$$

An example: the Cantor random variable ζ can be written as $\zeta = 2 \sum_{k=1}^{\infty} \frac{\xi_k}{3^k}$, where ξ_k , $k \ge 1$, are iid and take values 0 and 1 with probability 1/2 [then $2\xi_k$ takes values 0 or 2, which is consistent with the construction of the Cantor set]. Then we get $\mathbb{E}(\xi_k) = 1/2$, $\operatorname{Var}(\xi_k) = 1/4$, so that

$$\mathbb{E}(\zeta) = \frac{2}{2} \sum_{k=1}^{\infty} 3^{-k} = \frac{1/3}{1 - (1/3)} = \frac{1}{2}, \ \operatorname{Var}(\zeta) = \frac{4}{4} \sum_{k=1}^{\infty} 3^{-2k} = \frac{1/9}{1 - (1/9)} = \frac{1}{8}$$