
Math 606, Summer 20231: Introduction to Random Matrices; version of June 27,
2023

Notations.

(1) 1{·} — the indicator function for the event {·}.
(2) N (0, 1) — standard Gaussian random variable.
(3) i — the imaginary unit: i2 = −1.
(4) j, k — the additional imaginary units for quaternions.
(5) A⊤ — the transpose of the matrix A.
(6) A∗ — the transpose of the matrix A and complex (or quaternion) conjugation of the entries.
(7) In — the identity matrix of size n.
(8) Tr(A) — trace of the (square) matrix A.

Abbreviations

(1) CLT — Central Limit Theorem;
(2) ECM — Empirical Correlation Matrix;
(3) ESD — Empirical Spectral Distribution: empirical probability measure generated by the

eigenvalues of a (random) matrix;
(4) GOE — Gaussian orthogonal ensemble (β = 1);
(5) GSE — Gaussian Symplectic Ensemble (β = 4);
(6) GUE — Gaussian unitary ensemble (β = 2);
(7) RMT — Random Matrix Theory;
(8) SVD — Singular Value Decomposition.

Ideas for Homework

From the Book.

(1) Produce your version of Fig. 1.1.
(2) Derive (2.17) from (2.15).
(3) Produce your version of Fig. 3.1.
(4) Derive (3.9) from (1.7).
(5) Confirm (6.6).
(6) Confirm (6.21).
(7) Confirm the second equality in (8.1).
(8) Confirm the second equality in (8.23).
(9) Confirm (9.10) and (9.11).
(10) Confirm (10.21).
(11) Produce your version of Fig. 12.1 for N = 5.

Theoretical Exercises

(1) Confirm that quaternions H form a four-dimensional associative division algebra over the
field of real numbers.

(2) Confirm that the equation q2 + 1 = 0 has infinitely many solutions over H.
(3) Confirm that if p is a quaternion with zero real part and q is a unit quaternion, then qpq−1

has zero real part.
(4) Derive Stirling’s formula using Laplace’s method.

(5) Evaluate the integral
∫ +∞
0

eix
p
dx, p > 1.

(6) Confirm that the (a) determinant of an odd-dimensional skew-symmetric matrix is zero; (b)
every eigenvalue of a skew-symmetric matrix has real part equal to zero.
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(7) Confirm that, for two square matrices A,B, the trace of the product is the dot product of
the vectors vec(A⊤) and vec(B).

(8) Confirm that both the usual and the Kronecker products of two stochastic matrices are
stochastic matrices [that is, non-negative entries, with all row sums equal to 1].

(9) Confirm that Tr(A⊗B) = Tr(A)Tr(B).
(10) Confirm that, for an n-by-n matrix A = (aij), the norm ∥A∥ = maxi,j |aij| is not sub-

multiplicative, but n∥A∥ is.
(11) Give an example of two real Gaussian random variables such that their sum is not Gaussian.
(12) Give an example of two complex (jointly) Gaussian random variables that are uncorrelated

but dependent.
(13) Given two independent complex standard Gaussian random variables U and V and a real

number r, compute

E
U

U + rV
.

(14) Given iid standard Gaussian random variables X and Y and a real number r, compute

E
X + i rY

X + iY
.

(15) Let X1, . . . , Xn be iid standard Gaussian random variables. Confirm that the distribution
of the random vector

Y =
(X1, . . . , Xn)√
X2

1 + . . .+X2
n

is uniform on the unit sphere in Rn.
(16) Let U1, . . . , Un be iid uniform on [0, 1] and let U(1) < U(2) < . . . < U(n) be the corresponding

order statistics. Setting U(n+1) = 1, confirm that

lim
n→∞

P
(
n2 min

1≤k≤n
(U(k+1) − U(k)) > x

)
= e−x, x > 0,

lim
n→∞

P
(∣∣∣ n

lnn
max
1≤k≤n

(U(k+1) − U(k))− 1
∣∣∣ > ε

)
= 0, ε > 0.

In other words, the iid uniforms fill in the interval in a highly non-uniform way: the smallest
gap is of order 1/n2 and the largest gap is of order lnn/n.

(17) Confirm that the even moments of the semi-circle law are Catalan numbers.
(18) Consider the Stieltjes-Wigert weight function

φ(x) =
1√
π
e−(lnx)2 , x > 0.

(a) Confirm that

sn =

∫ +∞

0

xnφ(x)dx = e(n+1)2/4, n = 0, 1, 2, . . . .

(b) Confirm that ∫ +∞

0

xn sin(2π lnx)φ(x)dx = 0

for every n = 0, 1, 2, . . . and so the polynomials are not complete in L2

(
(0,+∞), φ(x)dx

)
.

(c) Confirm that the integral ∫ +∞

0

eaxφ(x)dx

diverges for every a > 0, but the integral∫ +∞

0

lnφ(x)

1 + x2
dx
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and the series ∑
k≥1

1
2k
√
s2k

both converge.
(19) Let U be a complex-valued random variable with uniform distribution in the unit disk

{z ∈ C : |z| ≤ 1}. Confirm that (a) both real and imaginary parts of U follow a semi-circle
law; (b) the absolute values of the real and imaginary parts of U follow a quarter-circle law;
(c) identify the distribution of |U |.

(20) Compute the Stieltjes transform of the Cauchy distribution with pdf 1/(π(x2 + 1)). The
answer is 1/(z ± i), depending on the sign of the imaginary part of z.

(21) Identify the main shapes of the Marchenko-Pastur distribution and sketch the graphs of the
corresponding densities.

(22) Confirm that the distribution of a GOE/GUE/GSE matrix is invariant under orthogo-
nal/unitary/symplectic transformation.

(23) Let A be a square matrix with iid standard Gaussian entries. Write the joint distribution
of the entries of the matrix (A− A⊤)/2.

(24) State and solve the corresponding version of the previous problem for matrices with complex
and quaternion entries.

(25) The Stieltjes transform of the semi-circle law. Confirm that, for complex num-
bers z with positive imaginary part,

1

2π

∫ 2

−2

√
4− x2

x− z
dx =

−z +
√
z2 − 4

2
,

where the complex square root on the right has positive imaginary part. A possible way
to proceed: x = 2 cos t; integration in t from 0 to π can be extended to full circle; then
get a complex integral in ζ over the unit circle using ζ = eit, 1/ζ = e−it, as well as Euler’s
formula for sin t and cos t; the integrand (a rational function of ζ) has a second-order pole
at the center of the circle and another (simple) somewhere inside the unit circle; residue
integration completes the process.

(26) The Stieltjes transform of the Marchenko-Pastur law leads to a complex integral
over a unit circle with a rational integrand having five simple poles inside. The compu-
tations are outlined in the proof of Lemma 3.11 in the book

Bai, Z. D. and Silverstein, J. W. Spectral Analysis of Large Dimensional Random
Matrices, Second edition, Springer, 2010.

See if you can fill in the details.
(27) Denote by δa the point mass at the point a ∈ R, and define probability measures µn on R

by

µn =

(
1− 1

n

)
δ0 +

1

n
δn, n = 1, 2, . . . .

Confirm that each µn has finite moments of every order and, as n → ∞, the sequence
{µn, n ≥ 1} converges weakly to δ0, but there is no convergence of moments. [The point
of this exercise is that (a) under some conditions, convergence of moments implies weak
convergence, (b) under some other conditions, weak convergence implies convergence of
moments, but (c) in general, the two types of convergence are different.]

Computer Exercises

(1) Confirm the semi-circle law for the Gaussian Orthogonal Ensemble. How will the picture
change if you replace Gaussian random variables with Cauchy, using scale parameter instead
of standard deviation?

(2) Repeat the previous exercise for GUE and GSE.
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(3) Confirm the circle law in the standard Gaussian case. How will the picture change if you
replace Gaussian with Cauchy?

(4) Write a program generating a random orthogonal matrix.
(5) Generate a sample trajectory of the Dyson Brownian motion with N ≥ 5.

Problems

(1) There are infinitely many non-isomorphic commutative, non-associative, finite-dimensional
division algebras over the field of real numbers; they all have dimension 2. One example is
the complex numbers with “multiplication” defined by

(a+bi)◦(x+yi) = (a−bi)(x−yi) ≡ (a+bi)∗◦(x+yi)∗ ≡
(
(a+bi)◦(x+yi)

)∗
= (ax−by)−(ay+bx)i.

Construct another example.
(2) Investigate the asymptotic of the Airy function Ai(x) as x → +∞.
(3) Investigate the distribution of eigenvalues of a random matrix that is (a) zero-trace (b)

skew-symmetric (c) skew-symmetric and has trace zero.
(4) Let κ be the condition number of a 2-by-2 GOE matrix. Determine the values of r ∈ R for

which Eκr < ∞. If this is too hard (or too easy), consider a 2-by-2 matrix with iid uniform
on [−1, 1] entries instead.

Main facts of general interest.

(1) GOE={(A + A⊤)/2 : A = (aij) ∈ Rn, aij iid N (0, 1)}: symmetric matrices with Gaussian
entries. To achieve certain normalization, one can divide by numbers other than 2. For
example, {(A + A⊤)/

√
2n} gives, for the limit of the distribution of eigenvalues, the (more

traditional) semi-circle law with density (2π)−1
√
4− x2 I(|x| ≤ 2).

(2) GUE=
{(

A + A⊤ + i(B − B⊤)
)
/2, A = (aij) ∈ Rn, B = (bij) ∈ Rn, aij, bij iid N (0, 1)

}
:

Hermitian matrices with Gaussian entries. Similarly, normalizations can vary. In particular,
a rather different normalization comes from considering Hermitian matrices with indepen-
dent zero-mean Gaussian entries that are real standard (variance one) on the diagonal and
complex standard off diagonal (that is, real and imaginary pars are iid with mean zero and
variance 1/2).

(3) GSE=
{(

A+A∗)/2, where A is a matrix with iid quaternion-valued Gaussian random vari-

ables, and A∗ is quaternion conjugate of A.
(4) A somewhat unified approach to Gaussian ensembles comes from considering square n-by-n

matrices H = H⊤ (β = 1) or H = H∗ (β = 2, 4) with iid standard normal on the diagonal
and iid β-dimensional normal with mean zero and covariance Iβ/2 above the diagonal; β = 1
corresponds to GOE, β = 2 corresponds to GUE, and β = 4 corresponds to GSE. Then the
joint pdf of the upper-triangular part of the matrix entries is

pβ(H) = (2π)−n/2 π−β
n(n−1)

4 e−
1
2
Tr(H2).

The corresponding joint pdf for the (real) eigenvalues is

ρβ(λ1, . . . , λn) =
1

n!

(
Γ(β/2)

)n∏n
k=1 Γ(kβ/2)

(∏
k<ℓ

|λℓ − λk|β
)

1

(2π)n/2
e−

1
2

∑n
k=1 λ

2
k .

(5) Wigner matrix W = (ξij, i, j = 1, . . . , n) with ξij = ξji, independent ξij, j ≥ i, and
identically distributed ξij for j > i and for j = i (but the distributions of the diagonal and
off-diagonal elements are usually different). It is typically assumed that each ξij has zero
mean and finite moment of some order bigger than or equal to 2.

(6) Wishart2 matrix is a matrix W of the form W = MM∗, where M is a rectangular matrix
with iid mean zero-variance one entries. The Wishart ensemble corresponds to Gaussian

2John Wishart (1898–1956) was a Scottish statistician with special interests in agriculture
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M with real/complex/quaternion entries (β = 1, 2, 4). Sometimes, the name of Laguerre3 is
also included, especially when β = 2.

(7) Spectrum of a real random matrix: an informal summary. Let A be a rectangular p-
by-n, p ≤ n, matrix with entries that are iid real random variables, each with mean zero,
variance one, and finite fourth moment.4 Then, for large n,

• The singular values of A are mostly in the interval
√
n ± √

p and approximately dis-
tributed according to the (square root of the) Marchenko-Pastur law;

• In the square case p = n, the (complex) eigenvalues of A are mostly spread out uniformly
around the disk |z| ≤

√
n in the complex plane

(8) The Circle Laws. Let A be an n-by-n matrix with real or complex iid entries, each having
zero mean and unit variance. In the complex case, the real and imaginary parts of each
entry are iid with mean zero and variance 1/2. Then

• The empirical distribution of the (complex) eigenvalues of the matrix A/
√
n converges

to the uniform distribution in the unit disk of the complex plane: the (full) circle

law, which started in 1960-s with the work of Ginibre5 for the Gaussian case, continued
in the 1980-s by V. L. Girko6 for more general cases, and fully established by T. Tao
and V. H. Vu in 2010.

• The empirical distribution of the (real) eigenvalues of the matrix A+A∗

2
√
n

converges to

the distribution with pdf equal to (1/π)
√
2− x2 1|x|≤

√
2 : the semi-circle law, which

goes back to the 1955 paper by Wigner.7

• The empirical distribution of the singular values of the matrix A/
√
n converges to the

distribution with pdf equal to (1/π)
√
4− x2 10<x<2 : the quarter-circle law, which

is a (very) particular case of the Marchenko-Pastur law.8

Recall that, given a finite collection of points x1, . . . , xn in a measurable space (X,X ), the
corresponding empirical distribution is a measure Ln on (X,X ) defined by Ln(G) =
1
n

∑n
k=1 1xk∈G, G ∈ X . If the points are random, then Ln is a random measure, and the

(weak) convergence to the corresponding limit can be studied in distribution, in probability,
or with probability one. For a random square matrix, the empirical distribution of the cor-
responding eigenvalues is sometimes referred to as the empirical spectral distribution

(ESD).
(9) The Bai-Yin Theorems9 can refer to various bounds on singular values or, more generally,

matrix norms. The original paper contains the following result: If Sn = n−1XX⊤, with
a p-by-n matrix X having iid real entries with mean zero, variance one, and finite fourth
moment, and limn→∞ p/n = y ∈ (0, 1], then, with probability one,

lim
n→∞

λmin(Sn) = (1−√
y)2, lim

n→∞
λmax(Sn) = (1 +

√
y)2.

Equivalently, with probability one, the singular values of X satisfy

σmin(X) =
√
n−√

p+ o(
√
p), σmax(X) =

√
n+

√
p+ o(

√
p), n, p → ∞.

The result is consistent with the quarter-circle law: If the case p = n, then y = 1 and
the singular values of n−1/2X are the square roots of the eigenvalues of Sn; the theorem

3Edmond Nicolas Laguerre (1834–1886) was a French mathematician, most famous in connection with the corre-
sponding polynomials.

4Sometimes, finite fourth moment is necessary; sometimes, the assumption simplifies the proof and can be relaxed.
5Jean Ginibre (1938–2020), French. Also, the ”G” in the FKG inequality.
6Vyacheslav Leonidovich Girko (b. 1946); http://www.general-statistical-analysis.girko.freewebspace.com/
7Eugene Paul ”E. P.” Wigner (1902–1995) was born in Hungary (Budapest), educated in Germany (TU Berlin),

became US citizen in 1937, and received Nobel Prize in Physics in 1963.
8Vladimir Alexandrovich Marchenko (b. 1922); Leonid Andreevich Pastur (b. 1937) was a Ph.D. student of

Marchenko.
9Zhidong Bai (b. 1943); Yong Quan Yin (1930–2020); the original paper is Limit of the smallest eigenvalue of a

large dimensional sample covariance matrix, Annals of Probability, Vol. 21, No. 3, pp. 1275–1294, 1993.
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asserts that, in the limit, all these singular values will be in the interval [0, 2]. Some further
directions include results such as

√
n−√

p ≤ Eσmin(X) ≤ Eσmax(X) ≤
√
n+

√
p

for Gaussian X, or [there exist numbers a, b such that, for every t > 0]

P
(√

n− a
√
p− t ≤ σmin(X) ≤ σmax(X) ≤

√
n+ a

√
p+ t

)
≥ 1− e−bt2

for sub-Gaussian X.
(10) The Marchenko-Pastur theorem describes the limit of the ESD for a Wishart matrix

Wn = n−1AA⊤, with a p-by-n matrix A having iid real entries with mean zero, variance
one, and limn→∞ p/n = y ∈ (0,+∞); the convergence is weak, with probability one, and
the distribution in the limit is known as the Marchenko-Pastur law or Marchenko-Pastur
distribution.10 This distribution is usually written as

max

{(
1− 1

y

)
, 0

}
· δ0 +

√
(b− x)(x− a)

2πcx
1a<x<b dx,

with a = (1 − √
y)2, b = (1 +

√
y)2, and δ0 denoting the point mass at zero: if y > 1,

then, in the limit, n < p so that the matrix Wn does not have full rank and has p − n
zero eigenvalues, leading to the point mass at zero. The extreme case y = 0 (n/p → ∞)
corresponds to a consistent estimator of the (identity) covariance matrix for the components
of the first column of the matrix A, and, after a CLT-type normalization, leads to the
semi-circle law:11 as n/p → ∞, the empirical cdf for the eigenvalues of√

n

p

(
Wn − Ip)

converges to the semi-circle law with radius 2. Note thatWn ∈ Rp×p for every n; assumptions
about the matrix A and the strong law of large numbers imply limn→∞ Wn = Ip with
probability one. The extreme case y = +∞ corresponds to a “non-identifiable model” and
might require further attention.

(11) If the entries of a Gaussian (O/U/S) ensemble become Brownian motions in such a way
that, at time t the distribution of the matrix is t1/2 times the corresponding standard en-
semble, then the term Dyson’s Brownian motion typically refers to the process describing
the resulting time evolution of the eigenvalues; occasionally, the same term can refer to the
matrix itself.

(12) From complex analysis.
(a) The original Cauchy transform is for measures on the unit circle; the Stieltjes

transform does something similar for measures on the real line, and with an oppo-
site sign.

(b) Helffer-Sjöstrand identity is an analog of the Cauchy integral formula for (certain
extensions of real) functions that are not analytic.

(c) The Sokhotski-Plemelj theorem investigates the Cauchy integral formula when the
point where the function is evaluated is approaching the path of integration.

(d) Painlevé classified 1-st and 2-nd order ODEs for which a pole is the only possible
singularity of the solution that can depend on the initial condition.

10For a short proof under even more general conditions, see P. Yaskov, A short proof of the Marchenko–Pastur
theorem, C. R. Acad. Sci. Paris, Ser. I, vol. 354, pp. 319–322, 2016. The proof uses the Stieltjes transform.

11Z. D. Bai, Y. Q. Yin, Convergence to the semicircle law, Annals of Probability, Vol. 16, No. 2, pp. 863–875,
1988; the proof is using truncation and the method of moments, under an additional assumption that the fourth
moment of A11 is finite.


