Random Object Generation¹

Starting point: uniform random variable U on [0, 1]. Good method is a trade secrete. One general idea is to use

$$X_{n+1} = aX_n + c \pmod{m}$$

for LARGE positive integer m and some positive integers a, c; then $U_n = X_n/m$, n = 1, ..., N will be (approximately) iid uniform on [0, 1] for some finite value of N.

Direct generation using the *inverse probability integral transform*: if F_X is the cdf of X and

$$F_X^{\leftarrow}(x) = \inf\{t > 0 : F(t) \ge x\}$$

is the *left continuous* inverse of F_X , the random variable $F_X^{\leftarrow}(U)$ has the same distribution as X. The proof is by direct computation: using the definition of F_X^{\leftarrow} , show that $\mathbb{P}(F_X^{\leftarrow}(U) \leq x) = \mathbb{P}(U \leq F_X(x)) = F_X(x)$. Note that if F_X is continuous and strictly increasing, then $F_X^{\leftarrow} = F_X^{-1}$, the inverse function.

Examples

- (1) EXPONENTIAL RANDOM VARIABLE X with mean θ : $F_X(x) = 1 e^{-x/\theta}$, $F_X^{\leftarrow}(x) = F_X^{-1}(x) = -\theta \ln(1-x)$, and so [using that U and 1-U have the same distribution] the random variable $-\theta \ln U$ an exponential random variable with mean θ .
- (2) THE STANDARD CAUCHY RANDOM VARIABLE ξ : the cdf is $F_{\xi}(x) = (1/2) + (1/\pi) \tan^{-1}(x)$, so $\tan(\pi U (\pi/2))$ has the standard Cauchy distribution.
- (3) THE BOX-MULLER TRANSFORMATION. If U and V are iid is uniform on (0, 1), then

$$X = \sqrt{-2\ln(U)}\cos(2\pi V), \quad Y = \sqrt{-2\ln(U)}\sin(2\pi V)$$

are iid standard normal. This is named after British statistician GEORGE EDWARD PELHAM BOX (1919 - 2013) and American computer scientist MERVIN EDGAR MULLER (1928–2018). When a *very* large number of Gaussian random variables is necessary, this method might not work because of all the computer power necessary to evaluate the log and trig functions.

(4) If X and Y are iid standard normal, then X/Y has standard Cauchy distribution and $X^2 + Y^2$ has χ^2_2 distribution.

Further developments

- A DISCRETE RANDOM VARIABLE X with $\mathbb{P}(X = a_k) = p_k > 0, k = 1, \dots, M$: generate a random variable U that is uniform on (0, 1) and then set $X = a_1$ if $U \leq p_1, X = a_2$ if $p_1 < U \leq p_1 + p_2$, etc.
- GEOMETRIC RANDOM VARIABLE $G_0(p)$: generate a random variable U that is uniform on (0, 1) and then

$$G_0(p) = \left\lfloor \frac{\ln U}{\ln(1-p)} \right\rfloor.$$

• Poisson random variable with mean λ :

$$\mathcal{P}(\lambda) = \min\left(n : \prod_{k=1}^{n} U_k < e^{-\lambda}\right) - 1 = \max\left(n : \prod_{k=1}^{n} U_k \ge e^{-\lambda}\right); \quad U_k \text{ iid uniform on } [0,1].$$

Indeed, we have $\mathbb{P}(\mathcal{P}(\lambda) > n) = \mathbb{P}(\operatorname{Gamma}(n+1,\lambda) \leq 1)$, $\operatorname{Gamma}(n+1) = \sum_{k=1}^{n+1} V_k$ for iid exponential V_k with mean $1/\lambda$, $\lambda V_k = -\ln U_k$.

- UNIFORM ON \mathbb{S}^n , the *n*-dimensional sphere $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1^2 + \cdots + x_n^2 = 1\}$: generate X_1, \ldots, X_n iid standard normal and compute $R = \sqrt{X_1^2 + \cdots + X_n^2}$, then $U = (X_1/R, \ldots, X_n/R)$ will be uniform on \mathbb{S}^n .
- REJECTION METHODS: for example to generate a uniform in the unit disk, generate X, Y that are iid in [-1, 1], and then keep the result if $X^2 + Y^2 \leq 1$.

¹Sergey Lototsky, USC