Random Object Generation ${ }^{1}$

Starting point: uniform random variable U on $[0,1]$. Good method is a trade secrete. One general idea is to use

$$
X_{n+1}=a X_{n}+c(\bmod m)
$$

for LARGE positive integer m and some positive integers a, c; then $U_{n}=X_{n} / m, n=1, \ldots, N$ will be (approximately) iid uniform on $[0,1]$ for some finite value of N.

Direct generation using the inverse probability integral transform: if F_{X} is the cdf of X and

$$
F_{X}^{\leftarrow}(x)=\inf \{t>0: F(t) \geq x\}
$$

is the left continuous inverse of F_{X}, the random variable $F_{X}^{\overleftarrow{ }}(U)$ has the same distribution as X. The proof is by direct computation: using the definition of $F_{X}^{\overleftarrow{X}}$, show that $\mathbb{P}\left(F_{X}^{\overleftarrow{X}}(U) \leq x\right)=\mathbb{P}\left(U \leq F_{X}(x)\right)=F_{X}(x)$. Note that if F_{X} is continuous and strictly increasing, then $F_{X}^{\overleftarrow{X}}=F_{X}^{-1}$, the inverse function.

Examples

(1) Exponential random variable X with mean $\theta: F_{X}(x)=1-e^{-x / \theta}, F_{X}^{\overleftarrow{X}}(x)=F_{X}^{-1}(x)=$ $-\theta \ln (1-x)$, and so [using that U and $1-U$ have the same distribution] the random variable $-\theta \ln U$ an exponential random variable with mean θ.
(2) The standard Cauchy random variable ξ : the cdf is $F_{\xi}(x)=(1 / 2)+(1 / \pi) \tan ^{-1}(x)$, so $\tan (\pi U-(\pi / 2))$ has the standard Cauchy distribution.
(3) The Box-Muller transformation. If U and V are iid is uniform on $(0,1)$, then

$$
X=\sqrt{-2 \ln (U)} \cos (2 \pi V), \quad Y=\sqrt{-2 \ln (U)} \sin (2 \pi V)
$$

are iid standard normal. This is named after British statistician George Edward Pelham Box (1919-2013) and American computer scientist Mervin Edgar Muller (1928-2018). When a very large number of Gaussian random variables is necessary, this method might not work because of all the computer power necessary to evaluate the log and trig functions.
(4) If X and Y are iid standard normal, then X / Y has standard Cauchy distribution and $X^{2}+Y^{2}$ has χ_{2}^{2} distribution.

Further developments

- A discrete random variable X with $\mathbb{P}\left(X=a_{k}\right)=p_{k}>0, k=1, \ldots, M$: generate a random variable U that is uniform on $(0,1)$ and then set $X=a_{1}$ if $U \leq p_{1}, X=a_{2}$ if $p_{1}<U \leq p_{1}+p_{2}$, etc.
- Geometric random variable $G_{0}(p)$: generate a random variable U that is uniform on $(0,1)$ and then

$$
G_{0}(p)=\left\lfloor\frac{\ln U}{\ln (1-p)}\right\rfloor .
$$

- Poisson random variable with mean λ :
$\mathcal{P}(\lambda)=\min \left(n: \prod_{k=1}^{n} U_{k}<e^{-\lambda}\right)-1=\max \left(n: \prod_{k=1}^{n} U_{k} \geq e^{-\lambda}\right) ; \quad U_{k}$ iid uniform on $[0,1]$.
Indeed, we have $\mathbb{P}(\mathcal{P}(\lambda)>n)=\mathbb{P}(\operatorname{Gamma}(n+1, \lambda) \leq 1)$, $\operatorname{Gamma}(n+1)=\sum_{k=1}^{n+1} V_{k}$ for iid exponential V_{k} with mean $1 / \lambda, \lambda V_{k}=-\ln U_{k}$.
- UNIFORM ON \mathbb{S}^{n}, the n-dimensional sphere $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+\cdots+x_{n}^{2}=1\right\}$: generate X_{1}, \ldots, X_{n} iid standard normal and compute $R=\sqrt{X_{1}^{2}+\cdots+X_{n}^{2}}$, then $U=\left(X_{1} / R, \ldots, X_{n} / R\right)$ will be uniform on \mathbb{S}^{n}.
- Rejection methods: for example to generate a uniform in the unit disk, generate X, Y that are iid in $[-1,1]$, and then keep the result if $X^{2}+Y^{2} \leq 1$.

[^0]
[^0]: ${ }^{1}$ Sergey Lototsky, USC

