Math 705 AGZ Random Matrices Book Ch. 4 - Some Generalities

The general points of the chapter:

- A framework for the derivation of the joint distributions of eigenvalues in the matrix ensembles.
- Derivation of such joint distributions for some classical ensembles: GOE/ GUE/ GSE, Laguerre, Jacobi, unitary ensembles.
- "Determinantal" point processes; eigenvalues of GUE are such. Derivation of a CLT for the number of eigenvalues in an interval; some "ergodic consequences."
- Time-dependant random matrices, entries replaced by Brownian Motion. Allows Ito integration. CLTs, large deviations.
- Concentration inequalities and their applications to random matrices.
- Tridiagonal model of RM, "beta ensemble."

Joint Distributions of eigenvalues

Proposition 1. For every nonnegative Borel-measurable function ϕ on $\mathcal{H}_{n}(\mathbb{F})$ s.t. $\phi(X)$ depends only on the eigenvalues of X, we have

$$
\int \phi d \rho_{\mathcal{H}_{n}(\mathbb{F})}=\frac{\rho\left[U_{n}(\mathbb{F})\right]}{\left(\rho\left[U_{l}(\mathbb{F})\right]\right)^{n} n!} \int_{\mathbb{R}^{n}} \phi(x)|\Delta(x)|^{\beta} \Pi_{i=1}^{n} d x_{i},
$$

where for every $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we write $\phi(x)=\phi(X)$ for any $X \in \mathcal{H}_{n}(\mathbb{F})$ with eigenvalues x_{1}, \ldots, x_{n}.

A couple of more such results follow in the book.
Next, the coarea formula: Fix a smooth map $f: M \rightarrow N$ from an n-manifold to a k-manifold, with derivative at a point $p \in M$ denoted $\mathbb{T}_{p}(f): \mathbb{T}_{p}(M) \rightarrow \mathbb{T}_{f(p)}(N)$. Let $M_{\text {crit }}, M_{\text {reg }}, N_{\text {crit }}$, and $N_{\text {reg }}$ be the sets of critical (regular) points (values) of f. (See Definition F. 3 and Proposition F. 10 in the book for the terminology.) For $q \in N$ s.t. $M_{\text {reg }} \cap f^{-1}(q)$ is nonempty, we equip the latter with the volume measure $\rho_{M_{\text {reg } \cap f^{-1}(q)} \text {. Put } \rho_{\varnothing}=0 \text { for }}$ convenience. Also let $J\left(\mathbb{T}_{p}(f)\right)$ denote the generalized determinant of $\mathbb{T}_{p}(f)$. (See Definition F. 17 in the book).

Theorem 1. (Coarea formula) With notation and setting as above, let ϕ be any nonnegative Borel-measurable function on M. Then:
(i) the function $p \rightarrow J\left(\mathbb{T}_{p}(f)\right)$ on M is Borel-measurable;
(ii) the function $q \rightarrow \int \phi(p) d \rho_{M_{r e g} \cap f^{-1}(q)}(p)$ on N is Borel-measurable;
(iii) the integral formula

$$
\int \phi(p) J\left(\mathbb{T}_{p}(f)\right) d \rho_{M}(p)=\int\left(\phi(p) d \rho_{M_{r e g} \cap f^{-1}(q)}(p)\right) d \rho_{N}(q)
$$

holds.

The authors say the above is a kind of a Fubini's Theorem.
Lemma 1. S^{n-1} is a manifold and for every $x \in S^{n-1}$ we have $\mathbb{T}_{x}\left(S^{n-1}\right)=\left\{X \in \mathbb{R}^{n}: x \cdot X=0\right\}$.
Proposition 2. With notation as above, we have

$$
\rho\left[S^{n-1}\right]=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

Lemma 2. Let $M \subset M a t_{n \times k}(\mathbb{F})$ be a manifold. Fix $g \in G L_{n}(\mathbb{F})$. Let $f=(p \rightarrow g p): M \rightarrow$ $g M=\left\{g p \in M a t_{n \times k}(\mathbb{F}): p \in M\right\}$. Then:
(i) $g M$ is a manifold and f is a diffeomorphism;
(ii) for every $p \in M$ and $X \in \mathbb{T}_{p}(M)$ we have $\mathbb{T}_{p}(f)(X)=g X$;
(iii) if $g \in U_{n}(\mathbb{F})$, then f is an isometry (and hence measure-preserving).

Lemma 3. With p, q, n positive integers so that $p+q=n$, and $D=\operatorname{diag}\left(I_{p}, 0_{q}\right)$, the collection $\operatorname{Flag}_{n}(D, \mathbb{F})$ is a manifold of dimension β pq. (Definitions of "Flag" and so on are in the book.)

Theorem 2. (Weyl) Let (G, H, M, Λ) be a Weyl quadruple. Then for every Borel-measurable nonnegative G-conjugation-invariant function ϕ on M, we have

$$
\int \phi d \rho_{M}=\frac{\rho[G]}{\rho[H]} \int \phi(\lambda) \sqrt{\operatorname{det} \Theta_{\lambda}} d \rho_{\Lambda}(\lambda)
$$

Here we use the following definition for Weyl quadruple.
Definition 1. A Weyl quadruple (G, H, M, Λ) consists of four manifolds G, H, M, and Λ with common ambient space $M_{n}(\mathbb{F})$ satisfying the following conditions:
(I) (a) G is a closed subgroup of $U_{n}(\mathbb{F})$,
(b) H is a closed subgroup of G, and
(c) $\operatorname{dim} G-\operatorname{dim} H=\operatorname{dim} M-\operatorname{dim} \Lambda$.
(II) (a) $M=\left\{g \lambda g^{-1}: g \in G, \lambda \in \Lambda\right\}$,
(b) $\Lambda=\left\{h \lambda h^{-1}: h \in H, \lambda \in \Lambda\right\}$,
(c) for every $\lambda \in \Lambda$ the set $\left\{h \lambda h^{-1}: h \in H\right\}$ is finite, and
(d) for all $\lambda, \mu \in \Lambda$ we have $\lambda^{*} \mu=\mu \lambda^{*}$.
(III) There exists $\Lambda^{\prime} \subset \Lambda$ such that
(a) Λ^{\prime} is open in Λ,
(b) $\rho_{\Lambda}\left(\Lambda \Lambda^{\prime}\right)=0$, and
(c) for every $\lambda \in \Lambda^{\prime}$ we have $H=\left\{g \in G: g \lambda g^{-1} \in \Lambda\right\}$.

We say that a subset $\Lambda^{\prime} \subset \Lambda$ for which (IIIa,b,c) hold is generic.
Application of the Weyl Theorem begin at page 209 of the book.

1 Determinantal point processes

Some definitions: Let Λ be a locally compact Polish space, equipped with a (necessarily σ-finite) positive Radon measure μ on its Borel σ-algebra (recall that a positive measure is Radon if $\mu(K)<\infty$ for each compact set K.) Next let $\mathcal{M}(\Lambda)$ denote the space of σ-finite Radon measures on Λ, and let $\mathcal{M}_{+}(\Lambda)$ denote the subset of $\mathcal{M}(\Lambda)$ consisting of positive measures.

Definition 2. (a) A point process is a random, integer-valued $\mathcal{X} \in \mathcal{M}_{+}(\Lambda)$. (By random we mean that for any Borel $B \subset \Lambda, \mathcal{X}(B)$ is an integer-valued random variable.)
(b) A point process \mathcal{X} is simple if

$$
P(\exists x \in \Lambda: \mathcal{X}(\{x\})>1)=0 .
$$

Lemma 4. A v-distributed random element x of \mathbb{X} can be associated with a point process \mathcal{X} via the formula $\mathcal{X}(B)=\left|\boldsymbol{x}_{B}\right|$ for all Borel $B \subset \Lambda$. If $v\left(\mathbb{X}^{\neq}\right)=1$, then \mathcal{X} is a simple point process.

Here \mathbb{X} denotes the space of locally finite configurations in Λ, and $\mathbb{X} \neq$ is the space of locally finite configurations with no repetitions. Or more precisely, for $x_{i} \in \Lambda, i \in I$ an interval of positive integers (beginning at 1 if nonempty), with I finite or countable, let $\left[x_{i}\right]$ denote the equivalence class of all sequences $\left\{x_{\pi(i)}\right\}_{i \in I}$, where π runs over all permutations (finite or countable) of I. Then we set

$$
\begin{aligned}
& \mathcal{X}=\mathcal{X}(\Lambda)=\left\{\mathbf{x}=\left[x_{i}\right]_{i=1}^{\kappa}, \text { where } x_{i} \in \Lambda, \kappa \leq \infty,\right. \text { and } \\
& \left.\quad\left|\mathbf{x}_{K}\right|:=\sharp\left\{i: x_{i} \in K\right\}<\infty \text { for all compact } K \subset \Lambda\right\}
\end{aligned}
$$

and

$$
\mathbb{X}^{\neq}=\left\{\mathbf{x} \in \mathcal{X}: x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

We give \mathbb{X} and \mathbb{X}^{\neq}the σ-algebra $\sigma_{\mathcal{X}}$ generated by the cylinder sets $C_{n}^{B}=\left\{\mathbf{x} \in \mathcal{X}:\left|\mathbf{x}_{B}\right|=n\right\}$, with B Borel with compact closure and n a nonnegative integer.

Now let us introduce one more definition:
Definition 3. Let \mathcal{X} be a simple point process. Assume locally integrable functions ρ_{k} : $\Lambda^{k} \rightarrow[0, \infty), k \geq 1$, exist such that for any mutually disjoint family of subsets D_{1}, \ldots, D_{k} of Λ,

$$
E_{v}\left[\Pi_{i=1}^{k} \mathcal{X}\left(D_{i}\right)\right]=\int_{\Pi_{i=1}^{k} D_{i}} \rho_{k}\left(x_{1}, \ldots, x_{k}\right) d \mu\left(x_{1}\right) \ldots d \mu\left(x_{k}\right)
$$

Then the functions ρ_{k} are called the joint intensities (or correlation functions) of the point process \mathcal{X} with respect to μ.

The authors remark that by Lebesgue's Theorem, for μ^{k} almost every $\left(x_{1}, \ldots, x_{k}\right)$,

$$
\lim _{\epsilon \rightarrow 0} \frac{P\left(\mathcal{X}\left(B\left(x_{i}, \epsilon\right)\right)=1, i=1, \ldots, k\right)}{\prod_{i=1}^{k} \mu\left(B\left(x_{i}, \epsilon\right)\right)}=\rho_{k}\left(x_{1}, \ldots, x_{k}\right) .
$$

Next,

Lemma 5. Let \mathcal{X} be a simple point process with intensities ρ_{k}.
(a) For any Borel set $B \subset \Lambda^{k}$ with compact closure

$$
E_{v}\left(\left|x^{\wedge k} \cap B\right|\right)=\int_{B} \rho_{k}\left(x_{1}, \ldots, x_{k}\right) d \mu\left(x_{1}\right) \ldots d \mu\left(x_{k}\right) .
$$

(b) If $D_{i}, i=1, \ldots, r$ are mutually disjoint subsets of Λ contained in a compact set K, and if $\left\{k_{i}\right\}_{i=1}^{r}$ is a collection of positive integers such that $\sum_{i=1}^{r} k_{i}=k$, then

$$
E_{v}\left[\Pi_{i=1}^{r}\binom{\mathcal{X}\left(D_{i}\right)}{k_{i}} k_{i}!\right]=\int_{\Pi D_{i}^{\times k_{i}}} \rho_{k}\left(x_{1}, \ldots, x_{k}\right) \mu\left(d x_{1}\right) \ldots \mu\left(d x_{k}\right) .
$$

We continue with "determinantal processes."
Definition 4. A simple point process \mathcal{X} is said to be a determinantal point process with kernel K (in short: determinantal process) if its joint intensities ρ_{k} exist and are given by

$$
\rho_{k}\left(x_{1}, \ldots, x_{k}\right)=\operatorname{de} t_{i, j=1}^{k}\left(K\left(x_{i}, x_{j}\right)\right) .
$$

Also,
Definition 5. An integral operator $\mathcal{K}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ with kernel K given by

$$
\mathcal{K}(f)(x)=\int K(x, y) f(y) d \mu(y), \quad f \in L^{2}(\mu)
$$

is admissible (with admissible kernel K) if \mathcal{K} is self-adjoint, nonnegative and locally traceclass, that is, with the operator $\mathcal{K}_{D}=\mathbf{1}_{D} \mathcal{K} \mathbf{1}_{D}$ having kernel $K_{D}(x, y)=\mathbf{1}_{D}(x) K(x, y) \mathbf{1}_{D}(y)$, the operators \mathcal{K} and \mathcal{K}_{D} satisfy:

$$
\begin{gathered}
<g, \mathcal{K}(f)>_{L^{2}(\mu)}=<\mathcal{K}(g), f>_{L^{2}(\mu)}, \quad f, g \in L^{2}(\mu), \\
<f, \mathcal{K}(f)>_{L^{2}(\mu)} \geq 0, \quad f \in L^{2}(\mu)
\end{gathered}
$$

For all compact sets $D \subset \Lambda$, the eigenvalues $\left(\lambda_{i}^{D}\right)_{i \geq 0}\left(\in \mathbb{R}^{+}\right)$of \mathcal{K}_{D} satisfy $\sum \lambda_{i}^{D}<\infty$.
We say that \mathcal{K} is locally admissible (with locally admissible kernel K) if the two identities above hold with \mathcal{K}_{D} replacing \mathcal{K}.

Lemma 6. Suppose $K: \Lambda \times \Lambda \rightarrow \mathbb{C}$ is a continuous, Hermitian and positive definite function, that is $\sum_{i=1}^{n} z_{i}^{*} z_{j} K\left(x_{i}, x_{j}\right) \geq 0$ for any $n, x_{1}, \ldots, x_{n} \in \Lambda$ and $z_{1}, \ldots, z_{n} \in \mathbb{C}$. Then \mathcal{K} is locally admissible.

Etc... The authors make further definitions of increasing complexity, and use them to derive CLT results.

2 Brownian motion and random matrices

Definition 6. Let $\left(B_{i, j}, \tilde{B}_{i, j}, 1 \leq i, \leq j \leq N\right)$ be a collection of iid real valued standard Brownian motions. The symmetric (resp. Hermitian) Brownian motion, denoted $H^{N, \beta} \in$ $\mathcal{H}_{N}^{\beta}, \beta=1,2$ is the random process with entries $\left\{H_{i, j}^{N, \beta}(t), t \geq 0, i \leq j\right\}$ equal to

$$
\begin{gathered}
H_{k, l}^{N, \beta}=\frac{1}{\sqrt{\beta N}}\left(B_{k, l}+i(\beta-1) \tilde{B}_{k, l}\right), \text { if } k<l, \\
H_{k, l}^{N, \beta}=\frac{\sqrt{2}}{\sqrt{\beta N}} B_{l, l} \text { if } k=l .
\end{gathered}
$$

Let $\left(W_{1}, \ldots, W_{N}\right)$ be a N-dimensional Brownian motion in a probability space (Ω, P) equipped with a filtration $\mathcal{F}=\left\{\mathcal{F}_{t}, t \geq 0\right\}$. Let Δ_{N} denote the open simplex

$$
\Delta_{N}=\left\{\left(x_{i}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}: x_{1}<x_{2}<\ldots<x_{N-1}<x_{N}\right\}
$$

with closure $\overline{\Delta_{N}}$. With $\beta \in\{1,2\}$, let $X^{N, \beta}(0) \in \mathcal{H}_{N}^{\beta}$ be a matrix with (real) eigenvalues $\left(\lambda_{1}^{N}(0), \ldots, \lambda_{N}^{N}(0)\right) \in \overline{\Delta_{N}}$. For $t \geq 0$, let $\lambda^{N}(t)=\left(\lambda_{1}^{N}(t), \ldots, \lambda_{N}^{N}(t)\right) \in \overline{\Delta_{N}}$ denote the ordered collection of (real) eigenvalues of

$$
X^{N, \beta}(t)=X^{N, \beta}(0)+H^{N, \beta}(t)
$$

with $H^{N, \beta}$ as in the definition above. An important observation partly due to Dyson is that the process $\left(\lambda^{N}(t)\right)_{t \geq 0}$ is a vector of semi-martingales, whose evolution is described by a stochastic differential system.

Theorem 3. Let $\left(X^{N, \beta}(t)\right)_{t \geq 0}$ be as above, with eigenvalues $\left(\lambda^{N}(t)\right)_{t \geq 0}$ and $\lambda^{N}(t) \in \overline{\Delta_{N}}$ for all $t \geq 0$. Then, the processes $\left(\lambda^{N}(t)\right)_{t \geq 0}$ are semi-martingales. Their joint law is the unique distribution on $C\left(\mathbb{R}^{+}, \mathbb{R}^{N}\right)$ so that

$$
P\left(\forall t>0,\left(\lambda_{1}^{N}(t), \ldots, \lambda_{N}^{N}(t)\right) \in \Delta_{N}\right)=1,
$$

which is a weak solution to the system

$$
d \lambda_{i}^{N}(t)=\frac{\sqrt{2}}{\sqrt{\beta N}} d W_{i}(t)+\frac{1}{N} \sum_{j: j \neq i} \frac{1}{\lambda_{i}^{N}(t)-\lambda_{j}^{N}(t)} d t, \quad i=1, \ldots, N
$$

with initial condition $\lambda^{N}(0)$.

