
Math 705 AGZ Random Matrices Book Ch.4 - Some Generalities
The general points of the chapter:

• A framework for the derivation of the joint distributions of eigenvalues in the matrix
ensembles.

• Derivation of such joint distributions for some classical ensembles: GOE/ GUE/ GSE,
Laguerre, Jacobi, unitary ensembles.

• “Determinantal” point processes; eigenvalues of GUE are such. Derivation of a CLT
for the number of eigenvalues in an interval; some “ergodic consequences.”

• Time-dependant random matrices, entries replaced by Brownian Motion. Allows Ito
integration. CLTs, large deviations.

• Concentration inequalities and their applications to random matrices.

• Tridiagonal model of RM, “beta ensemble.”

Joint Distributions of eigenvalues

Proposition 1. For every nonnegative Borel-measurable function φ on Hn(F) s.t. φ(X)
depends only on the eigenvalues of X, we have∫

φdρHn(F) =
ρ[Un(F)]

(ρ[Ul(F)])nn!

∫
Rn

φ(x)|∆(x)|βΠn
i=1dxi,

where for every x = (x1, ..., xn) ∈ Rn we write φ(x) = φ(X) for any X ∈ Hn(F) with
eigenvalues x1, ..., xn.

A couple of more such results follow in the book.
Next, the coarea formula: Fix a smooth map f : M → N from an n-manifold to a

k-manifold, with derivative at a point p ∈ M denoted Tp(f) : Tp(M) → Tf(p)(N). Let
Mcrit,Mreg, Ncrit, and Nreg be the sets of critical (regular) points (values) of f . (See Definition
F.3 and Proposition F.10 in the book for the terminology.) For q ∈ N s.t. Mreg ∩ f−1(q)
is nonempty, we equip the latter with the volume measure ρMreg∩f−1(q). Put ρ� = 0 for
convenience. Also let J(Tp(f)) denote the generalized determinant of Tp(f). (See Definition
F.17 in the book).

Theorem 1. (Coarea formula) With notation and setting as above, let φ be any nonnegative
Borel-measurable function on M . Then:

(i) the function p→ J(Tp(f)) on M is Borel-measurable;
(ii) the function q →

∫
φ(p)dρMreg∩f−1(q)(p) on N is Borel-measurable;

(iii) the integral formula∫
φ(p)J(Tp(f))dρM(p) =

∫ (
φ(p)dρMreg∩f−1(q)(p)

)
dρN(q)

holds.

1



The authors say the above is a kind of a Fubini’s Theorem.

Lemma 1. Sn−1 is a manifold and for every x ∈ Sn−1 we have Tx(Sn−1) = {X ∈ Rn : x.X = 0}.

Proposition 2. With notation as above, we have

ρ
[
Sn−1

]
=

2πn/2

Γ(n/2)

Lemma 2. Let M ⊂ Matn×k(F) be a manifold. Fix g ∈ GLn(F). Let f = (p→ gp) : M →
gM = {gp ∈Matn×k(F) : p ∈M}. Then:

(i) gM is a manifold and f is a diffeomorphism;
(ii) for every p ∈M and X ∈ Tp(M) we have Tp(f)(X) = gX;
(iii) if g ∈ Un(F), then f is an isometry (and hence measure-preserving).

Lemma 3. With p, q, n positive integers so that p + q = n, and D = diag(Ip, 0q), the
collection Flagn(D,F) is a manifold of dimension βpq. (Definitions of “Flag” and so on
are in the book.)

Theorem 2. (Weyl) Let (G,H,M,Λ) be a Weyl quadruple. Then for every Borel-measurable
nonnegative G-conjugation-invariant function φ on M , we have∫

φdρM =
ρ[G]

ρ[H]

∫
φ(λ)

√
detΘλdρΛ(λ).

Here we use the following definition for Weyl quadruple.

Definition 1. A Weyl quadruple (G,H,M,Λ) consists of four manifolds G, H, M , and Λ
with common ambient space Matn(F) satisfying the following conditions:

(I) (a) G is a closed subgroup of Un(F),
(b) H is a closed subgroup of G, and
(c) dimG− dimH = dimM − dimΛ.
(II) (a) M = {gλg−1 : g ∈ G, λ ∈ Λ},
(b) Λ = {hλh−1 : h ∈ H,λ ∈ Λ},
(c) for every λ ∈ Λ the set {hλh−1 : h ∈ H} is finite, and
(d) for all λ, µ ∈ Λ we have λ∗µ = µλ∗.
(III) There exists Λ′ ⊂ Λ such that
(a) Λ′ is open in Λ,
(b) ρΛ(Λ Λ′) = 0, and
(c) for every λ ∈ Λ′ we have H = {g ∈ G : gλg−1 ∈ Λ}.
We say that a subset Λ′ ⊂ Λ for which (IIIa, b, c) hold is generic.

Application of the Weyl Theorem begin at page 209 of the book.
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1 Determinantal point processes

Some definitions: Let Λ be a locally compact Polish space, equipped with a (necessarily
σ-finite) positive Radon measure µ on its Borel σ-algebra (recall that a positive measure is
Radon if µ(K) < ∞ for each compact set K.) Next let M(Λ) denote the space of σ-finite
Radon measures on Λ, and let M+(Λ) denote the subset of M(Λ) consisting of positive
measures.

Definition 2. (a) A point process is a random, integer-valued X ∈M+(Λ). (By random we
mean that for any Borel B ⊂ Λ, X (B) is an integer-valued random variable.)

(b) A point process X is simple if

P (∃x ∈ Λ : X ({x}) > 1) = 0.

Lemma 4. A v-distributed random element x of X can be associated with a point process X
via the formula X (B) = |xB| for all Borel B ⊂ Λ. If v(X6=) = 1, then X is a simple point
process.

Here X denotes the space of locally finite configurations in Λ, and X6= is the space of
locally finite configurations with no repetitions. Or more precisely, for xi ∈ Λ, i ∈ I an
interval of positive integers (beginning at 1 if nonempty), with I finite or countable, let [xi]
denote the equivalence class of all sequences {xπ(i)}i∈I , where π runs over all permutations
(finite or countable) of I. Then we set

X = X (Λ) = {x = [xi]
κ
i=1, where xi ∈ Λ, κ ≤ ∞, and

|xK | := ]{i : xi ∈ K} <∞ for all compact K ⊂ Λ}

and
X6= = {x ∈ X : xi 6= xj for i 6= j}.

We give X and X6= the σ-algebra σX generated by the cylinder sets CB
n = {x ∈ X : |xB| = n},

with B Borel with compact closure and n a nonnegative integer.
Now let us introduce one more definition:

Definition 3. Let X be a simple point process. Assume locally integrable functions ρk :
Λk → [0,∞), k ≥ 1, exist such that for any mutually disjoint family of subsets D1, ..., Dk of
Λ,

Ev
[
Πk
i=1X (Di)

]
=

∫
Πk

i=1Di

ρk(x1, ..., xk)dµ(x1)...dµ(xk).

Then the functions ρk are called the joint intensities (or correlation functions) of the point
process X with respect to µ.

The authors remark that by Lebesgue’s Theorem, for µk almost every (x1, ..., xk),

lim
ε→0

P (X (B(xi, ε)) = 1, i = 1, ..., k)

Πk
i=1µ(B(xi, ε))

= ρk(x1, ...., xk).

Next,
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Lemma 5. Let X be a simple point process with intensities ρk.
(a) For any Borel set B ⊂ Λk with compact closure

Ev
(
|x∧k ∩B|

)
=

∫
B

ρk(x1, ..., xk)dµ(x1)...dµ(xk).

(b) If Di, i = 1, ..., r are mutually disjoint subsets of Λ contained in a compact set K, and if
{ki}ri=1 is a collection of positive integers such that

∑r
i=1 ki = k, then

Ev

[
Πr
i=1

(
X (Di)

ki

)
ki!

]
=

∫
ΠD

×ki
i

ρk(x1, ..., xk)µ(dx1)...µ(dxk).

We continue with “determinantal processes.”

Definition 4. A simple point process X is said to be a determinantal point process with
kernel K (in short: determinantal process) if its joint intensities ρk exist and are given by

ρk(x1, ..., xk) = detki,j=1(K(xi, xj)).

Also,

Definition 5. An integral operator K : L2(µ)→ L2(µ) with kernel K given by

K(f)(x) =

∫
K(x, y)f(y)dµ(y), f ∈ L2(µ)

is admissible (with admissible kernel K) if K is self-adjoint, nonnegative and locally trace-
class, that is, with the operator KD = 1DK1D having kernel KD(x, y) = 1D(x)K(x, y)1D(y),
the operators K and KD satisfy:

< g,K(f) >L2(µ)=< K(g), f >L2(µ), f, g ∈ L2(µ),

< f,K(f) >L2(µ)≥ 0, f ∈ L2(µ),

For all compact sets D ⊂ Λ, the eigenvalues (λDi )i≥0(∈ R+) of KD satisfy
∑
λDi <∞.

We say that K is locally admissible (with locally admissible kernel K) if the two identities
above hold with KD replacing K.

Lemma 6. Suppose K : Λ×Λ→ C is a continuous, Hermitian and positive definite function,
that is

∑n
i=1 z

∗
i zjK(xi, xj) ≥ 0 for any n, x1, ..., xn ∈ Λ and z1, ..., zn ∈ C. Then K is locally

admissible.

Etc... The authors make further definitions of increasing complexity, and use them to
derive CLT results.
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2 Brownian motion and random matrices

Definition 6. Let (Bi,j, B̃i,j, 1 ≤ i,≤ j ≤ N) be a collection of iid real valued standard
Brownian motions. The symmetric (resp. Hermitian) Brownian motion, denoted HN,β ∈
Hβ
N , β = 1, 2 is the random process with entries {HN,β

i,j (t), t ≥ 0, i ≤ j} equal to

HN,β
k,l =

1√
βN

(Bk,l + i(β − 1)B̃k,l), if k < l,

HN,β
k,l =

√
2√
βN

Bl,l if k = l.

Let (W1, ...,WN) be a N -dimensional Brownian motion in a probability space (Ω, P )
equipped with a filtration F = {Ft, t ≥ 0}. Let ∆N denote the open simplex

∆N = {(xi)1≤i≤N ∈ RN : x1 < x2 < ... < xN−1 < xN},

with closure ∆N . With β ∈ {1, 2}, let XN,β(0) ∈ Hβ
N be a matrix with (real) eigenvalues

(λN1 (0), ..., λNN(0)) ∈ ∆N . For t ≥ 0, let λN(t) = (λN1 (t), ..., λNN(t)) ∈ ∆N denote the ordered
collection of (real) eigenvalues of

XN,β(t) = XN,β(0) +HN,β(t),

with HN,β as in the definition above. An important observation partly due to Dyson is that
the process (λN(t))t≥0 is a vector of semi-martingales, whose evolution is described by a
stochastic differential system.

Theorem 3. Let (XN,β(t))t≥0 be as above, with eigenvalues (λN(t))t≥0 and λN(t) ∈ ∆N for
all t ≥ 0. Then, the processes (λN(t))t≥0 are semi-martingales. Their joint law is the unique
distribution on C(R+,RN) so that

P (∀t > 0, (λN1 (t), ..., λNN(t)) ∈ ∆N) = 1,

which is a weak solution to the system

dλNi (t) =

√
2√
βN

dWi(t) +
1

N

∑
j:j 6=i

1

λNi (t)− λNj (t)
dt, i = 1, ..., N

with initial condition λN(0).
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