Summary ${ }^{1}$ of Quaternions.

Basic definitions.

The set:

$$
\mathbb{H}=\{q=a+b \mathfrak{i}+c \mathfrak{j}+d \mathfrak{k}: a, b, c, d \in \mathbb{R}\} .
$$

Multiplication rules,

$$
\begin{equation*}
\mathfrak{i}^{2}=\mathfrak{j}^{2}=\mathfrak{k}^{2}=\mathfrak{i j k}=-1, \tag{1.1}
\end{equation*}
$$

were (literally) carved in stone [into the stone of Brougham Bridge in Dublin, Ireland] on Monday, October 16, 1843, by Sir William Rowan Hamilton (1805-1865). ${ }^{2}$ In particular,

$$
\begin{equation*}
\mathfrak{i} \mathfrak{j}=-\mathfrak{j} \mathfrak{i}=\mathfrak{k} . \tag{1.2}
\end{equation*}
$$

Alternatively, $\mathfrak{i} \rightarrow \mathfrak{j} \rightarrow \mathfrak{k} \rightarrow \mathfrak{i}$. The resulting multiplication on \mathbb{H},

$$
\begin{align*}
(a+b \mathfrak{i} & +c \mathfrak{j}+d \mathfrak{k})(x+y \mathfrak{i}+z \mathfrak{j}+w \mathfrak{k})=(a x-b y-c z-d w)+(a y+b x+c w-d z) \mathfrak{i} \\
& +(a z+c x+d y-b w) \mathfrak{j}+(a w+x d+b z-c y) \mathfrak{k} \tag{1.3}
\end{align*}
$$

is associative but non-commutative, and turns \mathbb{H} into a division algebra.
For $q \in \mathbb{H}$, define

$$
\begin{equation*}
q^{*}=a-b \mathfrak{i}-c \mathfrak{j}-d \mathfrak{k}, \mathfrak{N}(q)=q q^{*}=a^{2}+b^{2}+c^{2}+d^{2}=q^{*} q, q^{-1}=\frac{q^{*}}{\mathfrak{N}(q)}(\text { if } \mathfrak{N}(q)>0) \tag{1.4}
\end{equation*}
$$

A VERSOR is a quaternion q with $\mathfrak{N}(q)=1$; it is used to describe rotations in \mathbb{R}^{3}.
A major algebraic miracle (which, of course, follows from (1.2) and (1.4)) is that

$$
\begin{equation*}
\left(q_{1} q_{2}\right)^{*}=q_{2}^{*} q_{1}^{*} \tag{1.5}
\end{equation*}
$$

and then

$$
\begin{equation*}
\mathfrak{N}\left(q_{1} q_{2}\right)=q_{1} q_{2} q_{2}^{*} q_{1}^{*}=\mathfrak{N}\left(q_{1}\right) \mathfrak{N}\left(q_{2}\right) \tag{1.6}
\end{equation*}
$$

Equivalent characterizations of \mathbb{H} :

- $\mathbb{H} \cong \mathbb{R}^{4}$ [four-dimensional Euclidean space], with $\mathfrak{N}(q)=\|q\|^{2}$, the Euclidean norm of the corresponding vector, and a (rather ugly) multiplication rule
(1.7) $(a, b, c, d)(x, y, z, w)=(a x-b y-c z-d w, a y+b x+c w-d z, a z+c x+d y-b w, a w+x d+b z-c y)$;
the rule, of course, is the same as (1.3).
- $\mathbb{H} \cong \mathbb{C}^{2}$ [a pair of complex numbers], by writing $q=(a+b \mathbf{i})+(c+d \mathfrak{i}) \mathfrak{j}$ and using the relation (1.1) for the imaginary units \mathfrak{i} and \mathfrak{j}.
- $\mathbb{H} \cong \mathbb{R} \times \mathbb{R}^{3}$ [a scalar and a vector] by writing $q=a+\vec{u}, \vec{u}=b \hat{\imath}+c \hat{\jmath}+d \hat{\kappa}$ and re-writing (1.3) as

$$
\begin{equation*}
(a+\vec{u})(x+\vec{v})=a x-\vec{u} \cdot \vec{v}+(a \vec{v}+x \vec{u}+\vec{u} \times \vec{v}) \tag{1.8}
\end{equation*}
$$

it is then natural to call a the real part of q and \vec{u}, the vector part. With this interpretation, a versor (unit quaternion)

$$
\hat{q}=\cos (\theta / 2)+\hat{u} \sin (\theta / 2)
$$

with a unit vector $\hat{u} \in \mathbb{R}^{3}$, represents rotation around the axis in the direction of \hat{u} by the angle θ :

$$
\mathbb{R}^{3} \ni \vec{v} \mapsto \hat{q} \vec{v} \hat{q}^{-1},
$$

where \vec{v} on the right-hand side is interpreted as a quaternion with zero real part; by direct computation, the real part of the resulting product will be zero.

[^0]
Algebra background.

The starting point is a GROUP, a set with a binary operation $(a, b) \mapsto a \circ b$ having a unit and an inverse. Next, we have a RING, a set with two binary operations, "addition" $(a, b) \mapsto a+b$ and "multiplication" $(a, b) \mapsto a \cdot b$; it is an Abelian (commutative) group for +; "multiplication" is associative and has the distributive property with "addition", but does not have to be commutative, invertible, or even have a unit. A field is a ring where both operations lead to Abelian groups. A LINEAR SPACE over a field is a collection of objects that allow linear combinations with coefficients in the field; a similar construction with a ring instead of a field is called a module. Finally, an algebra \mathcal{A} is a linear space over a field with a bi-LINEAR FORM, that is, a bi-linear operation $\mathcal{A} \times \mathcal{A} \ni(a, b) \mapsto[a, b] \in \mathcal{A}$. In a division algebra, this bi-linear operation is, in some sense, invertible (and this can be called "multiplication"): for every a, b, with $b \neq 0$, there are unique x, y such that $a=[b, x]=[y, b]$.

Here are some facts.
(1) A finite-dimensional division algebra over the field of real numbers can only be of dimension $1,2,4$, or 8 (as proved in 1958, independently, by Michel Kervaire and John Milnor).
(2) A commutative and associative finite-dimensional division algebra over the field of real numbers is isomorphic to either \mathbb{R} or \mathbb{C}.
(3) A non-commutative but associative finite-dimensional division algebra over the field of real numbers is isomorphic \mathbb{H}.
(4) The main eight-dimensional version, known as octonions, has multiplication non-commutative and non-associative, but still alternative, that is, the "multiplication" operation satisfies $[X,[X, Y]]=[[X, X], Y],[[X, Y], Y]=[X,[Y, Y]]$. Then, by analogy with (1.8), one concludes that a reasonable extension of the cross product ${ }^{3}$ is only possible in seven dimensions.
(5) A finite-dimensional commutative division algebra over the field of real numbers is either 1- or 2-dimensional (as proved in 1940 by Heinz Hopf, of the Hopf algebras fame and an advisor of Michel Kervaire).
(6) A finite-dimensional commutative division algebra over the field of real numbers DOES NOT have to be isomorphic to \mathbb{C}. An example is the complex numbers with "multiplication" defined by
$[(a+b \mathfrak{i}),(x+y \mathfrak{i})]=(a-b \mathfrak{i})(x-y \mathfrak{i}) \equiv(a+b \mathfrak{i})^{*}(x+y \mathfrak{i})^{*} \equiv((a+b \mathfrak{i})(x+y \mathfrak{i}))^{*}=(a x-b y)-(a y+b x) \mathfrak{i}$. This operation is commutative but not associative and does not have a unit.

[^1]
[^0]: ${ }^{1}$ Sergey Lototsky, USC; version of May 4, 2023.
 ${ }^{2}$ The vectors in \mathbb{R}^{3} and operations on them first appeared in 1880 s, in the works of J. Gibbs and O. Heaviside.

[^1]: ${ }^{3}$ note that cross product is NOT alternative

