
Summary1 of Quaternions.

Basic definitions.
The set:

H = {q = a+ bi+ cj+ dk : a, b, c, d ∈ R}.
Multiplication rules,

(1.1) i2 = j2 = k2 = i j k = −1,

were (literally) carved in stone [into the stone of Brougham Bridge in Dublin, Ireland] on Monday,
October 16, 1843, by Sir William Rowan Hamilton (1805–1865).2 In particular,

(1.2) i j = −j i = k.

Alternatively, i → j → k → i. The resulting multiplication on H,

(a+ bi+ cj+ dk)(x+ yi+ zj+ wk) = (ax− by − cz − dw) + (ay + bx+ cw − dz)i

+ (az + cx+ dy − bw)j+ (aw + xd+ bz − cy)k
(1.3)

is associative but non-commutative, and turns H into a division algebra.
For q ∈ H, define

(1.4) q∗ = a− bi− cj− dk, N(q) = qq∗ = a2 + b2 + c2 + d2 = q∗q, q−1 =
q∗

N(q)
(if N(q) > 0).

A versor is a quaternion q with N(q) = 1; it is used to describe rotations in R3.
A major algebraic miracle (which, of course, follows from (1.2) and (1.4)) is that

(1.5) (q1q2)
∗ = q∗2q

∗
1

and then

(1.6) N(q1q2) = q1q2q
∗
2q

∗
1 = N(q1)N(q2).

Equivalent characterizations of H:

• H ∼= R4 [four-dimensional Euclidean space], with N(q) = ‖q‖2, the Euclidean norm of the
corresponding vector, and a (rather ugly) multiplication rule

(1.7) (a, b, c, d)(x, y, z, w) = (ax−by−cz−dw, ay+bx+cw−dz, az+cx+dy−bw, aw+xd+bz−cy);

the rule, of course, is the same as (1.3).
• H ∼= C2 [a pair of complex numbers], by writing q = (a+bi)+(c+di)j and using the relation
(1.1) for the imaginary units i and j.

• H ∼= R × R3 [a scalar and a vector] by writing q = a + u⃗, u⃗ = bı̂ + cȷ̂ + dκ̂ and re-writing
(1.3) as

(1.8) (a+ u⃗)(x+ v⃗) = ax− u⃗ · v⃗ +
(
av⃗ + xu⃗+ u⃗× v⃗

)
;

it is then natural to call a the real part of q and u⃗, the vector part. With this interpretation,
a versor (unit quaternion)

q̂ = cos(θ/2) + û sin(θ/2),

with a unit vector û ∈ R3, represents rotation around the axis in the direction of û by the
angle θ:

R3 3 v⃗ 7→ q̂ v⃗ q̂−1,

where v⃗ on the right-hand side is interpreted as a quaternion with zero real part; by direct
computation, the real part of the resulting product will be zero.

1Sergey Lototsky, USC; version of May 4, 2023.
2The vectors in R3 and operations on them first appeared in 1880s, in the works of J. Gibbs and O. Heaviside.
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Algebra background.
The starting point is a group, a set with a binary operation (a, b) 7→ a ◦ b having a unit and

an inverse. Next, we have a ring, a set with two binary operations, “addition” (a, b) 7→ a + b
and “multiplication” (a, b) 7→ a · b; it is an Abelian (commutative) group for +; “multiplication” is
associative and has the distributive property with “addition”, but does not have to be commutative,
invertible, or even have a unit. A field is a ring where both operations lead to Abelian groups. A
linear space over a field is a collection of objects that allow linear combinations with coefficients
in the field; a similar construction with a ring instead of a field is called a module. Finally, an
algebra A is a linear space over a field with a bi-linear form, that is, a bi-linear operation
A × A 3 (a, b) 7→ [a, b] ∈ A. In a division algebra, this bi-linear operation is, in some sense,
invertible (and this can be called “multiplication”): for every a, b, with b 6= 0, there are unique x, y
such that a = [b, x] = [y, b].

Here are some facts.

(1) A finite-dimensional division algebra over the field of real numbers can only be of dimension
1,2,4, or 8 (as proved in 1958, independently, by Michel Kervaire and John Milnor).

(2) A commutative and associative finite-dimensional division algebra over the field of real num-
bers is isomorphic to either R or C.

(3) A non-commutative but associative finite-dimensional division algebra over the field of real
numbers is isomorphic H.

(4) The main eight-dimensional version, known as octonions, has multiplication non-commu-
tative and non-associative, but still alternative, that is, the “multiplication” operation sat-
isfies [X, [X,Y ]] = [[X,X], Y ], [[X,Y ], Y ] = [X, [Y, Y ]]. Then, by analogy with (1.8), one
concludes that a reasonable extension of the cross product3 is only possible in seven dimen-
sions.

(5) A finite-dimensional commutative division algebra over the field of real numbers is either
1- or 2-dimensional (as proved in 1940 by Heinz Hopf, of the Hopf algebras fame and an
advisor of Michel Kervaire).

(6) A finite-dimensional commutative division algebra over the field of real numbers DOES NOT
have to be isomorphic to C. An example is the complex numbers with “multiplication”
defined by

[(a+ bi), (x+yi)] = (a− bi)(x−yi) ≡ (a+ bi)∗(x+yi)∗ ≡
(
(a+ bi)(x+yi)

)∗
= (ax− by)− (ay+ bx)i.

This operation is commutative but not associative and does not have a unit.

3note that cross product is NOT alternative


