
Elementary Quantum Mechanics1

1. (One-particle) Schrödinger equation.
Physics form:

(1) i~Ψt = − ~2

2m
∆Ψ+ U(Ψ),

where ~ = 1.05 · 10−34J · s is Planck’s constant [connecting energy and angular frequency] and m is the
mass of the particle.

Math form:

(2) iut +∆u+ U(u) = 0,

which one can get from (1) after a linear change of variables. [You can take it further and consider
imaginary time τ = it, and then (2) becomes a heat equation.]

Abstract form:

(3) i~ψt = H(ψ),

“Classical”2 quantum mechanics: H is a linear self-adjoint operator [known as the Hamiltonian on a
(complex) Hilbert space H; eigenvalues of H are the energy level of the particle; eigenfunctions of H are
the observable states of the particle; ψ is known as the wave function and |ψ|2 is the probability density
function (pdf) describing the state of the particle. Note that (1) is a particular case of (3), with

H = − ~2

2m
∆+ U ;

the − ~2
2m∆ part represents the kinetic energy and U represents the potential energy. If we use separation

of variables and look for the solution of (3) in the form

ψ(t) = e−iEt/~φ, φ ∈ H,

then

(4) H(φ) = Eφ,

that is, φ has to be an eigenfunction of the operator H, with the corresponding eigenvalue E. If we are
“lucky” so that there are countable many solutions to (4) and the corresponding eigenfunctions φk, k ≥ 1
form an orthonormal basis in H, then the general solution of (3) is

ψ(t) =
∑
k

e−iEkt/~akφk, ak ∈ C,

and the “physical” solutions are those satisfying

∥ψ(t)∥2H = 1,

that is, ∑
k

|ak|2 = 1.

The main two examples: (quantum) harmonic oscillator and the hydrogen atom; in both cases we get
“lucky”.

Harmonic oscillator: H = L2(R),

H = − ~2

2m

∂2

∂x2
+
m2ω2x2

2
,

where ω is the frequency of the corresponding classical oscillator

(5) ẍ(t) + ω2x(t) = 0.
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In this case, (4) becomes

− ~2

2m
φ′′(x) +

m2ω2x2

2
φ(x) = Eφ(x),

which, after changing the variables z = x/a,

a =

√
~
mω

,

and v(z) = φ(x), becomes

v′′(z)− z2v(z) + λv(z) = 0, λ =
2E

~ω
,

which, in turn, after a change of variables u(z) = v(z)ez
2/2 becomes the Hermite differential equation:

u′′(z)− 2zu′(z) + (λ− 1)u(z) = 0,

which we solve using the power series method to conclude that the only physically relevant solutions are
polynomials corresponding to

λk = 2k + 1, k = 0, 1, 2, . . . .

In particular, the lowest energy, also known as the ground state, corresponding to k = 0 is

E0 =
~ω
2

and the corresponding wave function

ψ0(t, x) =
1

(πa2)1/4
e−iE0t/~e−x2/(2a2)

means that the pdf describing the position of the particle in the ground state is Gaussian with mean zero

and variance a2/2 =
~

4mω
:

|ψ0(t, x)|2 =
1

a
√
π
e−x2/a2 .

The result illustrates

• The Bohr correspondence principle: as ~ → 0, we have a → 0 meaning that the particle is at
rest at x = 0, which, with zero energy E0, is consistent with (5) describing the classical harmonic
oscillator. Another way to have a → 0 is to have m → ∞ (or, more generally, to have mω much
bigger than ~ = 1.05 · 10−34J · s, which is what we have in classical mechanics anyway.

• The Heisenberg uncertainty principle, in both position-momentum and time-energy forms: if
we think of a as the measure of the uncertainty △x in the location of the particle and △t = 1/ω as
the basic time scale, then △p = m△x/△t is the uncertainty in the measurement of the momentum,
and

△x△p = mωa2 =
~
2
= △tE0.

Hydrogen atom: H = L2(R3),

(6) H = − ~2

2m
∆− e2

4πε0r
,

where e is the elementary charge, ε0 is the electric permittivity of vacuum, and r =
√
x2 + y2 + z2.

Here, an electron moving around a proton, some preliminary estimates must be carried out to ensure
that subsequent computations make sense, at least to some extend:

(1) The proton is about 1800 times heavier than the electron and therefore can be assumed not moving;
(2) If a is the distance between the proton and the electron, m is the mass of the electron, and p is the

momentum, then

E(a) =
p2

2m
− e2

4πε0a
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is the energy of the electron. By the uncertainty principle, pa ∼ ~, so that

E(a) ∼ ~2

2ma2
− e2

4πε0a

and the minimal value of the right-hand side is achieve when

(7) a = a0 =
4πε0~2

me2
≈ 0.5 · 10−10meters,

the Bohr radius of the hydrogen atom: the (approximate) closest distance between the proton
and electron. The corresponding value of the energy is

(8) E0 = − ~2

2ma20
Further analysis will show a0 and E0 are the “natural” distance and energy scales of the problem.
The speed v of the electron satisfies

v =
p

m
∼ ~
a
∼ e2

4πε0~
∼ c

137
,

where c is the speed of light in vacuum. In other words, no relativistic corrections [which are of
order (v/c)2 ∼ 10−4] are necessary.

Now the objective is to compute the eigenvalues and eigenfunctions of the operator (6), that is, to compute
non-zero solutions of

− ~2

2m
∆φ− e2

4πε0r
φ = −λφ, λ > 0,

that are physically relevant, that is, satisfy ∫
R3

|φ|2dV <∞.

Note that we expect the energy levels to be negative: it is the negative energy that keeps electron from
flying away and thus keeps the atom together.

Step 1. Write ∆ in spherical coordinates (r, θ, ϕ).
Step 2. Separation of variables: look for solutions in the form

φ = A(r)B(θ)G(ϕ),

and get the equation

(9)
r2A′′ + 2rA′

A
+

B′′

B sin2 ϕ
+
G′′ +G′ cotϕ

G
+

2r

a0
− λ

E0

r2

a20
= 0;

as was promised a few line above, a0 is the Bohr radius (7) and E0 is the corresponding energy (8).
Step 3. Use physical reasoning [similar to the analysis of the drum/timpani]: because of the spherical

symmetry of the problem, we expect B(θ) = B(θ + 2π) and G(ϕ) = G(ϕ + 2π). The 2π-periodicity of B
immediately implies

(10) B(θ) = einθ

and introduces the first important parameter into the problem: the integer number n.
Step 4. Go back to (9), with (10) in mind, to conclude that

(11) G′′ +G′ cotϕ =

(
n2

sin2 ϕ
− β

)
G

for some number β. The define v(z) by G(ϕ) = v(cosϕ) to get

(1− z2)v′′ − 2zv′ =

(
n2

1− z2

)
v

and then continue to w(z) = (1− z2)−n/2v(z) for the end result:

(1− z2)w′′ − 2(n+ 1)xw′ + (β − n(n+ 1))w = 0.
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The physically relevant solutions of this equation are polynomials [generalized Legendre polynomials];
such polynomial solutions exist exactly when

β = ℓ(ℓ+ 1)

for some ℓ ≥ |n|. All other solutions have “bad” singularities when z = ±1 [that is, when ϕ = 0 or
ϕ = π]. The integer ℓ becomes the second important parameter of the problem. Writing Pℓ,n to denote
those polynomial solutions, we re-trace the steps to conclude that

G(ϕ) = sinn(ϕ)Pℓ,n(cosϕ).

Step 5. Now determine the function A. To this end, define

κ =

√
λ

E0
.

Then define the function u = u(z) by

A(r) =

(
r

a0

)ℓ

e−κr/a0 u(2κr/a0).

Keeping in mind that (9) and (11) imply

r2A′′ + 2rA′

A
+

2r

a0
− λ

E0

r2

a20
= β = ℓ(ℓ+ 1),

derive the following equation for u:

zu′′ + (2ℓ+ 2− z)u′ + (κ−1 − (ℓ+ 1))u = 0,

known as the associated Laguerre differential equation. The polynomial (physically relevant) so-
lutions of this equation exist if and only if

1

κ
= N = 1, 2, 3 . . . ,

and are known as the generalized Laguerre polynomials L
(2ℓ+1)
N+ℓ . The third parameter of the problem

N represents the energy levels of the system:

EN =
E0

N2
;

keeping in mind that E0 < 0, we see that the energy EN is increasing with N while staying negative. There
is also a somewhat confusing convention E1 = E0.

Step 6. Put everything together and write the wave functions of the hydrogen atom at the energy level
N :

(12) ψ(t, r, θ, ϕ) = CN,ℓ,ne
−itEN/~einθ sinn(ϕ)Pℓ,n(cosϕ)(r/a0)

ℓe−r/(a0N)L
(2ℓ+1)
N+ℓ (2r/(a0N)).

The number CN,ℓ,n ensures that∫ ∞

0

∫ 2π

0

∫ π

0
|ψ(t, r, θ, ϕ)|2 sinϕdϕ dθ r2dr = 1.

Of course, (12) looks totally incomprehensible when thrown at you in a physics or chemistry book. On the
other hand, in many physics and chemistry books, equation (12) is the starting point. Also, the notations
for the angles can be different.

A few comments:

• The state of the hydrogen atom is determined by three numbers: principal quantum number

N = 1, 2, . . ., the azimuthal (orbital) number ℓ = 0, 1, . . . , N − 1, and the magnetic number

n = 0,±1, . . . ,±ℓ. The magnetic number n determines the orientation of electron’s trajectory in
space. The orbital number ℓ determines the shape of electron’s orbit and is often denotes by a letter
[s = 0, p = 1, d = 2, f = 3], which certainly adds to the confusion. Similar procedures are used
to study more complicated atoms, leading to similar results and notations such as 5s2p1, meaning
there are 2 + 1 = 3 electrons at the energy level N = 5, two of them have ℓ = 0 and one has ℓ = 1.
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• The wave function in the ground state is

ψ0(t, r, θ, ϕ) =
1√
π
e−itE0/~a

−3/2
0 e−r/a0 .

You are welcome to confirm that∫ ∞

0

∫ 2π

0

∫ π

0
|ψ0(t, r, θ, ϕ)|2 sinϕdϕ dθ r2dr = 1,

and also ∫ ∞

0

∫ 2π

0

∫ π

0
r|ψ0(t, r, θ, ϕ)|2 sinϕdϕ dθ r2dr = 3a0/2,

that is, in the ground state, the average distance between the proton and the electron is 3a0/2,
but, with very small probabilities, the electron can come arbitrarily close to or get arbitrarily far
from the proton.

In other words, there is no such thing as “the” size of the hydrogen [or any other] atom, although,
for hydrogen, 10−10 meters is a good “ballpark value”.

• The number

α =
e2

4πε0c~
≈ 1

137
is known as the fine structure constant; it has no units [check it!].

• A bit of history. Max Plank [age 43] came up with the relation E = ~ω while studying black body
radiation in 1901; Niels Bohr [age 28] came up with a model of the hydrogen atop while studying
spectral lines in 1913, well before Erwin Schrödinger [age 37] postulated his equation in 1924. It
was Max Born [age 45] who interpreted the square of the absolute value of the solution of the
Schrödinger equation as the probability density function in 1927; Hiesenberg [age 26] introduced
the uncertainty principle also in 1927. From 1927 to about 1933, various famous and very famous
people (Dirac, Weyl, von Neumann, etc.) developed the mathematical foundations of quantum
mechanics.


