
Instructor: MATH 407 March 19, 2021
Prof. Arratia Poisson random variable and Poisson process

Motivation Thanks to Matlab project C, you are already somewhat familiar with the Bernoulli
process, and the first ten arrivals in that process, especially for a tiny value of p, such as p = .0000001.
The Poisson process is the limit of the Bernoulli process, when p→ 0.

Poisson random variables. Let λ > 0. X is said to have the Poisson distribution with parameter
λ if, for k = 0, 1, 2, . . .

P(X = k) = e−λ
λk

k!
. (1)

For k = 0, 1, 2 (1) simplifies: P(X = 0) = e−λ,P(X = 1) = λe−λ,P(X = 2) = λ2e−λ/2. Thanks
to theTaylor series for the exponential function, exp(z) =

∑
k≥0 z

k/k! (true for any complex number
z ∈ C,) the values in (1) sum to 1, and X is a proper nonnegative integer valued random variable.
For example, under (1), P(X > 2) = 1− P(X = 0, 1, or 2) = 1− e−λ(1 + λ+ λ2/2).

Facts to memorize: Under (1), λ = EX = VarX.

Baby exercise: suppose Z is Poisson, with EZ = 3.2. Simplify: P(Z = 1)/P(Z = 0) = ,
P(Z = 2)/P(Z = 1) = ,P(Z = 5)/P(Z = 4) = .

Relation to Binomial distributions. Suppose pn → 0 with n pn → λ ∈ (0,∞). Suppose that
the distribution of Xn is Binomial(n, pn) and the distribution of X is Poisson(λ). (This includes
the more restrictive case, pn = λ/n for fixed λ, and all n ≥ λ.) Then Xn converges in distribution,

meaning that for each fixed k, as n → ∞,
(
n
k

)
pkn(1 − pn)n−k → e−λ λ

k

k!
. For 407, you do not need

to know the proof. But you should be able to easily see that EXn = n pn → λ = EX, and
VarXn = n pn(1− pn)→ λ = VarX.

An easy way to know whether you should use Binomial(n, p) or Poisson(λ): ask whether can get
your hands on n. For example: suppose a cookie dough averages 40 chocolate chips per pound,
and X is the number of chips in a small batch of cookies weighing 1 ounce. The exercise is:
P(X = 0) = ,P(X = 3) = ,P(X ≥ 2) = . There is no “n” in the story, and
we should fit a Poisson distribution with λ = EX = 40/16 = 2.5.

Poisson process. To get free of one-dimensional thinking, we start with a three-dimensional exam-
ple: meteor strikes from 2019 to 2029, in the United States. We get rid of Alaska and Hawaii, and
further simplify the map so that our country is a rectangle, 3000 miles from west to east and 1000
miles from north to south. Suppose the rate of strikes is 1.21 per million square miles per year. (For
the overall area of the U.S., the rate is 3.63 per year, and for our 10 year span, we expect 36.3 strikes.
Say ‘the west’ is the western 1/3 of our area, and the rest is the other 2/3. Using the full 10 year
span, let X be the number of strikes on the west, (call its mean µ), let Y be the number of strikes on
the rest, (call its mean ν, and let Z := X + Y be the number of strikes on the entire country. Write
λ for the mean of Z. The appropriate model is: X is Poisson with µ = EX = 12.1, Y is Poisson
with ν = EY = 24.2, X and Y are independent, and Z is Poisson with λ = EZ = 36.3. [There is an
underlying theorem, call it the Poisson superposition theorem: X, Y independent Poisson distributed
implies that X + Y is also Poisson distributed.] You should try to imagine two alternate ways that



the meteors will arrive: a) each square mile, independently of all other square miles, attracts meteor
strikes at the rate .00000121 per year; b) God decides to have Z meteors strike the U.S. over these
10 years, according to (1) with Z in the role of X and 36.3 as the value for λ. Having found a
value for Z, for example 25, independently for each of the Z meteors, she picks a random time and
place to land it! Both constructions are valid; note that each meteor has a p = 1/3 chance to land
in the west. From b), it should be plausible that, conditional on the event {Z = 25}, the distribu-
tion of X is Binomial(n = 25, p = 1/3). Again, there is a theorem, and it is a small extension of
the Poisson superposition theorem: if X, Y are independent Poisson, and Z = X + Y , then with
p = EX/(EX + EY ), for any 0 ≤ k ≤ n,

P(X = k |Z = n) =

(
n

k

)
pk(1− p)n−k. (2)

You should be able to imagine further divisions: say California is 1/6 of one million squre miles, hence
1/18 of the entire country. Given that 45 meteors strike the U.S. in the next decade, the number
to hit California will be Binomial(n = 45, p = 1/18), and the conditional expectation is np = 2.5.
Without conditioning, the distribution is Poisson, with mean 36.3/18 = 2.0166...., slightly more than
2. This is over an entire decade, and the rate per year, for California, is r = 36.3/180 = .20166....

The rate r Poisson process, whose full name is: the time homogeneous, one-dimensional Poisson
process with rate r. After reading the paragraph below, go back and thing about the standard case,
which uses r = 1. (I present the general case, even though I always end up rescaling time, so the
that I only need to deal with the standard case, because if I showed you the standard case first, and
then asked you to generalize to allow a rate r, it would be much more confusing.) Our notation will
be similar to what we used for the Bernoulli process, except that Sn, for the Binomial distributed
number of heads after n tosses (of a p-coin) will be replaced by Nt, for the number of arrivals by time
t, which is like the number of meteors landing on the interval (0, t].

Notations.
For t > 0, Nt is the number of arrivals by time t. We define N0 = 0.
For k = 1, 2, . . ., Tk is the time of the kth arrival. We define T0 = 0.

The interarrival times are W1,W2, . . ., so that

Tk = W1 +W2 + · · ·+Wk,

and W1,W2, . . . turn out to be mutually independent, and identically distributed (i.i.d.). The relation
tying the counts to the arrival times is an identity of events:

{ω : Nt < k} = {ω : Tk > t}. (3)

The relation (3) is described as duality.

Distributions

Nt is Poisson, with λ := ENt = rt.
W ≡ W1 has distribution called exponential with rate parameter r: for t ≥ 0,

P(W > t) = P(Nt = 0) = e−rt.



In the above, we started with strict inequality, to respect the duality relation (3), but by continuity,
we also have P(W = t) = 0 and P(W ≥ t) = e−rt. From the integration-by-parts upper tail formula,
EW =

∫
t≥0 P(W > t) dt =

∫
t≥0 e

−rt dt = 1/r.

All the above distributional facts, and the i.i.d. claim about W1,W2, . . ., are proved by taking
the limit of a sequence of Bernoulli processes, using p = pn = r/n, and scaling time by a factor of
n. Your Matlab project 1b was meant to illustrate this limit, using n = 1, 000, 000, and you should
imagine r = 1, but if your computer performed 1.2 million seed attempts per second, then, in units
of seconds, and after scaling seeds Ti by a million, to get ‘running times’ around a a second, and
using the name Ti again for these rescaled times, you would be approximating the Poisson process
with rate r = 1.2.

In the meteor strike example, we discussed two ways to imagine constructing the Poisson process;
these were labeled a) and b). Now, for the one-dimensional rate r Poisson process, we have a third
construction, c): start with i.i.d. exponentially distributed, W1,W2, . . ., with EWi = 1/r. Let
Tk = W1 + · · ·+Wk, and define Nt by (3), so that Nt is the number of k such that Tk ∈ (0, k].

It is a sad fact of life that “W is exponential with parameter 2” is not unambiguous; the parameter
might be intended as the rate, so that r = 2 and EW = 1/2, or the parameter might be intended
as the mean, so that EW = 2 and the rate is r = 1/2. To avoid this ambiguity, you should always
specify mean, or rate, when giving the parameter for an exponential distribution. The same holds
for a more general family, called Gamma distributions, which include the exponential distributions.

Exercises. Calls arrive at a switchboard at an average rate of .2 per second; that is, one every 5
seconds on average. Assume the appropriate Poisson process.

a1) P( wait at least 4 seconds for the first call to arrive) =

a) P( wait at least 4 seconds, after the tenth call, for the eleventh call to arrive) =

b) Let Nt be the number of calls arriving in the first t seconds. Simplify exactly ( of course without
using a calculator ) the ratio P(Nt = 5)/P(Nt = 4) = .

d1) Simplify P(N50 = 7) = .

d2) Simplify P(N20 = 3) = .

e) Simplify, to show binomial coefficients in the answer: P(N20 = 3|N50 = 7) = .

Short answers Work in seconds; the rate is r = .2. a1) P(W1 > t) = e−rt = e−.8. a) P(W11 > t) =
same answer as a1). b) With λ = rt = .2t, λ/5 = .04t. d1) Here rt = 50r = 10, so e−10107/7!. d2)
Now rt = 20r = 4 so e−443/3! e) Use (2), with p = 20/50 = 2/5, to get

(
7
3

)
(2/5)3(3/5)4. (This was a

numerical example to help you understand (4), below.)

407 digression; some proofs. You do not need to learn these for 407.

First, how is Poisson as the limit of Binomial distributions proved? Some students know, from
their calculus study, that e = limn→∞(1 + 1

n
)n. A better lemma is: if c1, c2, . . . have n cn → ` ∈

(−∞,∞), then (1 + cn)n → e`. For the Binomial distribution, this gets applied with cn = −pn and



` = −λ < 0, but the result about (1 + cn)n is very useful both for positive and for negative values of
the limit `. For the proof: by the continuity of log and exponential function, the result is equivalent
to showing ln(1+cn)n → `. Equivalently, n ln(1+cn)→ `, which, with our notation for asymptotics,
is that cn ∼ `/n implies ln(1 + cn) ∼ `/n. Note that ncn → ` ∈ (−∞,∞) implies that cn → 0. The
statement that f(x) := ln(1 + x) has f ′(x) = 1/(1 + x) and hence f ′(0) = 1 says that if cn → 0 with
cn 6= 0, then ln(1 + cn) ∼ cn. Multiplying by n, n ln(1 + cn) ∼ n cn; by the hypothesis that n cn → `,
being asymptotic to n cn is the same as converging to `. QED.

Second, the superposition theorem. Suppose that X is Poisson(µ), Y is Poisson(ν), X and Y
are independent, Z = X + Y , and λ = µ + ν, and p = µ/λ, so that µ = λ p and ν = λ(1 − p). In
the following calculation, consider events A = {X = k}, B = {Y = n − k}, and C = {Z = n}. To
verify the displayed equality below, notice that λn pk(1 − p)n−k = (λ p)k(λ(1 − p))n−k, and that the
factorials match up with the binomial coefficient.

e−µ
µk

k!
e−ν

νn−k

(n− k)!
= e−λ

λn

n!

(
n

k

)
pk(1− p)n−k. (4)

The left side above arises as P(A ∩ B), using the given Poisson distributions for X and Y , and the
independence of X and Y . Summing over k = 0 to n proves that Z has Poisson distribution with
parameter λ; this proves the superposition theorem. To prove the extended superposition result,
discussed after b) in the meteor strike story: start from the right side, and the assumption that Z
is Poisson(λ), and define X to have the following conditional distribution: given {Z = n}, X is
Binomial(n, p) (and Y := Z − X); the right side expresses P(A ∩ C) = P(C)P(A|C). The equality
with the left side shows that X, Y are independent Poisson. Noting that A∩B = A∩C ⊂ C, we get
P(A|C) = P(A∩C)/P(C) = P(A∩B)/P(C) = P(A)P(B)/P(C), using the independence of A and B
for the final equality. This proves (2).


