
Partial Differential Equations: Basic Terms and Four Main Equation in the Whole Space1

Some notations

• Subscripts as partial derivatives: For u = u(t, x, y, . . .),

ut =
∂u

∂t
, uxx =

∂2u

∂x2
, etc.

• Rn is a collection of ordered n-tuples [or vectors] (x1, . . . , xn), with each xk ∈ R; for n = 2, we alternatively
write (x, y), and for n = 3, (x, y, z);

• For g = (g1, . . . , gn) and h = (h1, . . . , hn),

g · h = g1h1 + · · ·+ gnhn, |h|2 = h · h.

• ∇ is the “vector” (
∂

∂x1
, . . . ,

∂

∂xn

)
;

• ∆ is the Laplace operator, or Laplacian,

∂2

∂x21
+ · · ·+ ∂2

∂x2n
.

The four main equations.
Transport equation ut + v · ∇u = 0, u = u(t, x), t > 0, x ∈ Rn and v ∈ Rn is the constant vector representing

the velocity of the transport [note that vmust have units of speed]. It is a particular case of the equation of

continuity ut +÷(vu) = 0, which, in turn, comes from conservation of “matter” and the divergence theorem.

Heat equation ut = a∆u, u = u(t, x), t > 0, x ∈ G ⊆ Rn. It is a combination of the equation of continuity
with Fick’s Law of diffusion vu = −A∇u in the particular case of a linear stationary isotropic homogeneous

medium.

Wave equation utt = c2∆u, u = u(t, x), t > 0, x ∈ G ⊆ Rn. The two main sources of the wave equation are
(a) Electromagnetic theory (Maxwell’s equations) and (b) Elasticity (Newton’s second law, combined with the
divergence theorem and Hook’s law, once again for linear stationary isotropic homogeneous medium.

Poisson equation ∆u = −f, u = u(x), x ∈ G ⊆ Rn [known as Laplace equation when f = 0]. Both equations
can appear (a) In electromagnetic theory, e.g. as an alternative form of the first Maxwell’s equation; (b) as the
stationary regime [limiting case, as t→ ∞], of heat and wave equations.

Basic Terminology

• Initial value problem [IVP] or Cauchy problem, when u = u(t, x) and we have the initial condition(s),
that is, the value of u(0, x), and, if necessary, ut(0, x), utt(0, x), etc.

• Boundary value problem [BVP], when x ∈ G ⊂ Rn and the value of u on the boundary of G [boundary
condition] is prescribed.

• Initial-boundary value problem, when you have both initial and boundary conditions.
• Linear equation, when the unknown function u enters in a linear way.
• Semi-linear, quasi-linear, fully nonlinear are various “degrees” of nonlinearity.
• Order of the equation is the highest order of the partial derivative appearing in the equation.
• Elliptic, hyperbolic, parabolic equations: once we know what an elliptic operator is [the (±)Laplace

operator is an example, but the general definition is hard: basically, you want an “abstract” operator to
“behave” like ±∆], then, if A is an elliptic operator, then equations of the form Au = ... are elliptic;
utt − Au = ..., hyperbolic, and ut − Au = ..., parabolic. In particular, heat equation is parabolic, wave
equation is hyperbolic, and Laplace/Poisson is elliptic. For second-order equations in two independent
variable, there is an alternative classification that somewhat resembles ellipse/hyperbola/parabola.

Solution of the main equations in the whole space.

Transport equation: if ut+ v · ∇u = 0 and u(0, x) = φ(x) is a C1 function [that is, continuously differentiable],
then u(t, x) = φ(x − vt). Indeed, by the chain rule, ut = −v · ∇φ, ∇u = ∇φ. In words, the “initial profile” φ is
moving “to the right” with constant velocity v [when n = 1 and v > 0, quotation marks can be removed].
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Heat equation: If ut = a∆u and u(0, x) = φ(x), then

(1) u(t, x) =
1

(4πat)n/2

∫
Rn

e−|x−y|2/(4at)φ(y) dy

Indeed, let us start with n = 1: ut = auxx. Take the Fourier transform on both sides in the x-variable:

û(t, ω) =
1√
2π

∫ ∞

−∞
u(t, x)e−ixω dx.

Then the properties of the Fourier transform imply ût = −aω2û which is an ODE, with solution

(2) û(t, ω) = e−aω
2tφ̂(ω).

As we know, for σ > 0, the Fourier transform of e−x
2/(2σ2) is σe−ω

2σ2/2 Then, with σ2 = 2at, we conclude that the

Fourier transform of the function K(t, x) = 1√
2at
e−x

2/(4at) is exactly

(3) F [K](ω) = e−aω
2t.

We also know that product of Fourier transforms corresponds to the convolution, with the
√
2π factor in the right

place. In other words, (2) and (3) imply

(4) u(t, x) =
1√
4πat

∫ +∞

−∞
e−(x−y)2/(4at)φ(y) dy,

which is (1) with n = 1.
The case of n > 1 follows after observing that the n-dimensional version of (3) is a product of n one-dimensional

versions.
The function

H(t, x; a) =
1

(4πat)n/2
e−x

2/(4at)

is called the heat (Gaussian) kernel. More generally, a kernel refers to a function which gives you something
interesting/useful/etc. after you convolve another function with it.

Wave equation. If utt = c2uxx, u(0, x) = φ(x), ut(0, x) = ψ(x) [now the equation is second-order in time, so
we need two initial conditions, corresponding to the initial displacement and initial speed] then

(5) u(t, x) =
φ(x− ct) + φ(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
ψ(y) dy

Indeed, taking the Fourier transform, similar to the heat equation, we get ûtt(t, ω) = −c2ω2û(t, ω), or û(t, ω) =

φ̂(ω) cos(cωt) + ψ̂(ω)
cω sin(cωt). Then (5) follows from the properties of the Fourier transform, keeping in mind that

cos(cωt) =
eicωt + e−icωt

2
, sin(cωt) =

eicωt − e−icωt

2i
with multiplication by complex exponentials corresponding to translations in the physical space, and the Fourier

transform of
∫ x
0
ψ(y) dy is ψ̂(ω)/(iω).

Now only the case n = 1 is easily doable [and even then equality (5) has a special name: the d’Alembert formula.]
The cases n = 2 and n = 3 are (surprisingly) more difficult and give very different answers.

Poisson equation
Here, we just take the Fourier transform on both sides to get

(6) û(ω) =
f̂(ω)

|ω|2

[now you see why we had −f from the start; otherwise we would have to keep writing the − sign coming from the
Fourier transform of ∆u. Inverting the Fourier transform in (6) might not always be possible because of “division
by zero” and, because of that, when it comes to the whole space, people prefer the following modification:

∆v − v = −f
so that

(7) v̂(ω) =
f̂(ω)

1 + |ω|2
.

Now there is no division by zero, and v can always be recovered. In fact, for many purposes, the explicit formula for
v might not be as useful as (7).


