PDEs of Musical Instruments

To varying degree of accuracy, most musical instruments can be described by the wave equation
uy = AAu, t >0, € GCR”

with the function u = u(t, z) representing small deviations of a suitable quantity from the equilib-
rium position corresponding to u = 0. The boundary conditions are a major part of the story. In
particular, if A2 is the smallest eigenvalue of —A in G with the corresponding boundary conditions
(BC), then the fundamental (lowest) frequency of the instrument is

Wy = CA,.

Note that this is the angular frequency; the corresponding linear frequency [measured in Hz| is

W
Ve = —.
2m
The boundary conditions are either zero Dirichlet [ZD] when u|gse = 0, or mixed [MX] when both
u and Vu are involved.

The following table summarizes the results.

Instrument c? G BC A\
Strings Zizzi;); 0, L] ZD  7w/L
flute sound in air 0, L] ZD  n/L
clarinet sound in air 0, L] MX 7/(2L)
oboe, sax, brass | sound in air in R? MX 7w/L
drums tensi.on disk radius R ZD  a30/R

density ’

Clarinet vs flute. Both are modeled by a one-dimensional object (a thin cylinder) of about the
same length [about 0.7m for the flute; about 0.6m for the clarinet]. The two open ends of the flute
imply zero boundary conditions for the deviation of the air density from the equilibrium, resulting
in the same eigenfunctions

ox(x) = sin(wkx /L)
as for the strings. In particular,
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The mouth piece of the clarinet imposes the Neumann boundary condition u,(0,¢) = 0 at that
end [intuitively, the density is the largest at the point of entry]. The resulting eigenvalue problem

pr(z) = =Aip(), ¢i(0) = (L) =0

leads to -
() = cos(\gz), L = 3 +7k, k=0,1,2,...,
so that .
)\* == )\0 == E

Taking ¢ = 340m/s for the speed of sound, we get somewhat reasonable estimates for the lowers
frequencies of the flute and the clarinet:

340 340
N —— 2 240Hz, v, .~ —— ~ 140H
Pl 907 = e T 06 -

compared to “official” 265H z and 165H z, respectively.

Three-dimensional but spherically symmetrical instruments.

With varying degree of accuracy, we think of the the pressure distribution in the oboe, as well
as in sax, trumpet, trombone, and tuba, as spherically symmetric, when the distance r is measures
from the corresponding mouthpiece. The main reason for going three-dimensional is the bell-shaped
opening at the end of each of these instruments.

Remembering that, in three dimensions, the Laplacian of a spherically symmetric function g =

g(r), r=+/22 +y>+ 22 is

Ag(r) = V- Vg(r) = 7 - (& F) _ g0 g0 7 GO ey 20

r 72 T r T

we end up with the eigenvalue problem
2¢,(r)
Al + 280 = 3o (r)

with the boundary conditions ¢} (0) = ¢x(L) = 0: we now know that a mouthpiece means Neumann
boundary condition, and the above equation confirms it; with ¢} (0) # 0, the second term will blow
up.
A substitution

V() = ron(r)
leads to the equation

k() = = A\g(r)
[check it: @ = /r, ' =1 /r—1p/r? etc.] with zero Dirichlet boundary conditions 1, (0) = (L) =
0: because g (0) is a [finite] number, we have to have lim, o r¢x(r) = 0. In other words, we get
the same eigenvalues as for the strings and the flute!

Now, what about the bassoon and the French horn?
Mathematics of the drums.

As a mathematical object, a drum is a (bounded) sub-set G of the plane R? that is not too bad;
as always, the precise meaning of “bad” depends on the problem you are trying to solve. Most of
the time, it is enough to assume that the boundary OG of G is not too “wild” and, for example,
can be written as a level set of a “nice” function of two variables or otherwise is a reasonable curve
so that we can use Green’s formula.

The problem we are trying to solve is the wave equation

(1) Ut = Cz(uxx + Uyy), t> 07 (x,y) € G7
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with zero boundary conditions u|se = 0 and some initial conditions u|—o = f(x,y), ut|t=0 = g(x,y).

Here is the general solution of the problem.

Note that the operator

A U(l‘,y) = —AU(I,y) = umz('ray) + uyy<x73/)
defined on twice continuously differentiable functions u = u(z,y), (z,y) € G, satistying u|se = 0,
is symmetric and positive definite. Indeed, keeping in mind that
V- (vVu) = Vu- Vv +vAu

we compute

—(Au,v) = /G(Au(x,y))v(x, y)dxdy = /G (Vu- Vo=V - (vVu))dzdy

= / (Vu - Vo)dedy — / v(Vu - it)de;
G oG

in the third equality we use the divergence form of Green’s formula so that 7 is the outside unit
normal to dG. The boundary conditions imply that the last term [the line integral] is equal to zero,
that is,

—(Au,v) = /G(Vu -Vv)dzdy = —(Av, u);

the second equality follows after exchanging v and v and repeating the computations. In other
words, the operator is indeed symmetric. Putting u = v shows that the operator is positive-definite:

—(Au,u) = /(Vu -Vu)dzdy >0, u#0:
G

the only way the integral is zero is when Vu = 0 in G, that is, when w is constant, which, because
of the zero boundary conditions, is only possible when v = 0 in G.
Let us now consider the eigenvalue problem

(2) A, = —ANiors Prloc = 0.
We already know that, because of symmetry and positivity, A7 > 0 and if \; # A, then
(3) / Orpndrdy = 0.

G

It turns out that, just as for symmetric matrices, all eigenvalues are non-defective (algebraic mul-
tiplicity is the same as geometric multiplicity) and the corresponding eigenfunctions ¢y, k > 1 can
be chosen so as to form an orthonormal basis in Ly(G). That is, (3) holds for all k # n and if
h = h(z,y) is a function on G such that

/ \h|?dxdy < oo,
G
then

hz,y) =) (/G h(z7w)sok(z7w)dzdw) o, y).

k
After that, usual separation of variables leads to the solution of equation (1):

u(t, z,y) = Z (fk cos(cAxt) + chk sin(c)\kt)> o(x,y),
(4) ; ’
fr = /Gf(x,y)sok(%y)drrdy, Ik = /Gg(x, y)er(x, y)dudy.



A famous question, “Can we hear the shape of the drum,” posed by M. Kac [of the Feynman-Kac
formula] asks whether the collection of numbers A, & > 1, uniquely determines the domain G.
The general answer is “No” [with an explicit construction of two different domains with the same
collection of \g, but, as always, it is just the beginning of an interesting story; check it out.

Our next task is to compute the numbers A, for the disk of radius R:
G ={(x,y): 2° +y* < R*},
with disk being the shape of a typical drum.
To this end, we switch to polar coordinates
xr=rcosf, y=rsinf
and then
A 0? N 10 n 1 02
S or2  ror  r206?
We also separate the variables, looking for solutions of (2) in the form
or(z,y) = F(r)H(0).
Then (2) becomes
r2F"(r) +rF'(r) + (X — A)F(r) =0, H"(0) + AH(0) =0

for some number A.
In the equation for F', we change the variable

r=—

Ak
to get the following equation for V(z) = F(z/\):
(5) 2V"(2) + 2V (2) + (22— AV (2) =0
which we recognize as the Bessel equation. It is totally clear that the function ¢ must NOT have
any singularities at zero r = 0: there is nothing in the original equation (2) to suggest otherwise.
Then (5) must have a solution that has no singularities at r = 0, which, by the Fuchs-Frobenius

theory, can only happen when A = N2 for a non-negative integer N. The corresponding solution
is, up to a constant factor, Bessel’s function

(6) Viz) = Jv(2) = Z<_1)j22j+N?!](;+N)!‘

For each N, we have two “essentially different” choices for the function H:
Hy(6) = cos(N), Hy(0) = sin(N0).

Note that there is an alternative way to conclude that A = N2, by noticing that the function H
must be 27-periodic.
We still have not figured out g, but we have yet to use the boundary condition ¢g|,—r = 0 which
becomes F(R) =0 or V(RA;) =0 or
Jn(RA) = 0.

Now we are facing yet another problem: showing that the function Jy = Jy(z) has at least one zero
for z > 0. It turns out that, for each IV, the function Jy has infinitely many positive zeros a,, v,
and each one of the zeros is simple and is not shared by any other J;;. In particular, oy o ~ 2.4.
A “preponderance of evidence” argument justifying some of these claims is the alternating sing
in the power series expansion of Jy, suggesting the same type of behavior as sine or cosine. On the
other hand, power series of e~ is also alternating, so there is some reasonable doubt. Accordingly,
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a complete proof proceeds as follows. In (5) we make a change of the unknown function, W(z) =
V2V (2) to conclude that

N? - (1/4)

22

W"(z) + (1 - ) W(z) =0,
and then using the Sturm comparison theorem to conclude that, for large z, the function W is
indeed “similar” to sin(z) or cos(z).

We can now summarize the results about (2) when G is a disk of radium R. Let o, x > 0 denote
root number m of the function Jy: J(apmny) =0, m=1,2,..., N =0,1,2... [Note that Jy(0) =0
for N =1,2,...]. Then, for k = (N, m),

Qn,
g = T’N, or = CrJn(amnr/R)Hy(0)

for some constant Cj, to ensure [, [¢i|*dzdy = 1. In particular,

(1) the collection of eigenvalues and eigenfunctions is indexed by a two-dimensional array (N, m),
which, if necessary, can be converted into a one-dimensional array [a standard CS exercise];

(2) for r € [0, R] and every N, the function Jy(a,, nv7/R) has exactly m zeros.

(3) A rather mysterious identity

R
/ rJIn(amnr/R)In(aenr/R)dr =0, { # m,
0

is actually a particular case of (3) if you remember that dzdy = rdr d6.

(4) The basic nodal lines on the drum are the points where ¢, = 0, that is, either straight lines
6 =const or circles r =const. Those are the places you do not want to hit while playing the
drum. Sometimes, you can even see some of those lines on a well-used drum [e.g. timpani
in Disney Concert Hall].

Many of the above computations are rather general and apply in any number of dimensions and
to both heat and wave equations. In particular, the same Bessel functions can describe the heat
distribution in a sauce pan or in a pipe line.

Equation (2) is sometimes called the Helmholtz equation. For a nice bounded domain G C R",
the numbers Ay obey the Weyl Law:
y Ao
hoo kUM
for some number C¢ depending on the domain G.
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