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A NOWHERE DIFFERENTIABLE FUNCTION

In Theorem 9.4 we gave a safe but unexciting condition which allowed us to
differentiate a Fourier series term by term. What happens if we go ahead and
differentiate formally term by term without imposing conditions? Then, formally,

if f(x) ~ Za,expirx’ then ‘f'(x)~ Zira,expirx’.

But it is clear that we can have X|a,| convergent so that, by Theorem 9.2, the
convergence of Xa,expirx is trouble-free and yet lim sup|ra,| = co so that the

r—oo
sum X ira, exp irx cannot possibly converge. (For example, we could take a, =r~*
whenever r =2%"[n> 1], a, = 0 otherwise.)

And that, apparently, is the end of the story. However, Weierstrass was able to
see rather more in the remarks above and use them as a hint for his famous
construction of a continuous function which was nowhere differentiable.

To understand the stir that this example caused, the reader must remember that
though it was understood that a continuous function could fail to be differentiable
at a point (look at f(x)=|x]|), it was also generally believed that a continuous
function must be differentiable at some point. Indeed, many advanced calculus
texts carried ‘proofs’ of this fact (and even Galois seems to have thought himself
in possession of such a proof).

(In passing let me add that the proofs were not necessarily worthless. For example
some authors, essentially, proved the true, and interesting, theorem that a con-
tinuous function with only a finite number of maxima and minima must be differen-
tiable at a dense set of points and then stated mistakenly that a continuous function
can only have a finite number of maxima and minima.)

In this chapter we shall construct a version of Weierstrass’s continuous nowhere
differentiable function.

Example 11.1. 37_,(r!) ! sin((r!2t) converges uniformly on T as n— oo to h(t) where
h:T >R is a continuous nowhere differentiable function.

In order to shorten the main proof we make some preliminary computations.
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Lemma 11.2. (i) 32,()"'<2(n!) "  forn>1,

(ii) |sinx —siny|<|x —y| for all x, yeT,

(ii) IfK > 3 is an integer and x€T then we can find yeT such that Kn™' <|x — y| <
3Kn~! and yet |sin Kx —sin Ky| > 1.

Proof. () XR.0)7T'<SEZ,m) M+ 1)K ER, (M) TI2TOTY =27
(i) Use the mean value theorem. (iii) Observe that sin Kt takes all values between
1 and —1 in the range (x + K™ 'n,x + 3K~ !xn]. If we take y,,y,e(x+ K 'z,
x + 3K~ '] with sin Ky, =1 and sin Ky, = — 1 then at least one of y, and y,
must satisfy the conditions of (iii). [ ]

Proof of Example 11.1. The fact that 3""_ ,(r!)~ ! sin((r!)?*t) converges uniformly on
T to a continuous function h(t) follows from Theorem 9.2 (or directly from the
Weierstrass M test). All that remains therefore is to prove that h is nowhere
differentiable and to show this it suffices to show that h is not differentiable at
any fixed point x.

Let us write

n—1

h,() =Y, (r))”'sin((r!)?e),

ky(t) = (n!) ™ sin((n!)?t),

Wo= Y ) sin(E)?,

=n+

so that h, + k, + I, = h. This decomposition is the key to the construction. Now
consider any integer n > 3. By Lemma 11.2(jii) we can find an x,eT such that

(A), (M) 2n<|x—x,| <3(n") %=,
yet (B)a 1kn(x) = koxn)| = (n) ™ [sin((n!)*x) — sin((n!)*x,)| > (n!) ™.
Using the inequality |x — x,| < 3(n!)~2n together with Lemma 11.2 (ii) we have

(O 1ha(x) = hy(x4)]

< ','Z; ()~ Ysin((r!)%x) — sin((r!)*x,)| < ':Z; D7) x — ()% x,|

n—1 n—2 n—-2
=Y r!lx——x,,l=<(n—1)!+ Y r!)|x—x,,|<<(n—1)!+ Y (n—2)!>|x—x,,
r=0 r=0 r=0
=2(n—1)!|x—x,| < 6mn"(n!)"
On the other hand Lemma 11.2(i) shows that
D), LI< Y Y '<2(m+DH7!

r=n+1
for all teT and so

(Bl 11:06) = L)l S 1 (X)] + 1 1,(x,)| < 4((n+ DY
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Fig. 11.1. Steps in the construction of a nowhere differentiable function.
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Let us sum up what we have done so far. We have chosen an x, whose distance
from x has the same order of magnitude as the period of k, (this is formula (A),)
but for which k,(x) — k(x,) is relatively large and so the chord joining (x, k(x)) to
(X, k,(x,)) has a steep slope (this is formula (B),). Since the period of k, is so small
compared with that of h, we know that, although h, may be large relative to k,,
the difference h,(x) — h,(x,) is relatively small (this is formula (C),). Finally, since
1, is small compared to h,, it follows that [,(x) — [,(x,) is small. (A look at Figure 11.1
may help a bit, reflection and the passage of time will help a great deal.)

Using the inequalities (B),, (C), and (E), we obtain

(F)y |h(x) = h(x,)| = [n(x) = k(xp)| = [hn(x) — By(xp)| — [1(X) — LX)
>m) "t =6n"tn@n) " —4((n+1))!
= ()11 — 6mn~ ! —4(n+ 1)~ 1) = ()" 1(1 — 30n~ 1) > (n!) "2

whenever n > 60. In other words the value of
h(X) - h(xn) = (kn(x) - kn(xn)) + (hn(x) - hn(xn)) + (ln(x) - In(xn))

is dominated by the k,(x) — k,(x,) term. Thus, since the chord joining (x, k,(x)) to
(X ka(x,)) Was steep, the chord joining (x, h(x)) to (x, h(x,)) remains so. Using (A),
and (F), we have, in fact,

h(x) — h(x,)| _ (n))~! 1 n!
2 . — = —
(H), X — X, 2 3a(n!)"? 6z
for n>60. Thus
M — oo whilst x, - x,
X — X,
so h cannot be differentiable at x. n

Although the construction and proof above may seem hard to grasp at first,
the reader who studies them carefully will find that the underlying idea is very
simple. She can check her understanding by constructing a proof for Weierstrass’s
original function > _ a "sinb"x where b is an integer and b/a and a are
sufficiently large. (The same function was discovered independently but not
published by Cellérier. Many years earlier Bolzano seems to have been close to a
continuous nowhere differentiable function constructed along different lines but
he too did not publish.)



