
Summary of Normal Distribution1

Normal (Gaussian) random variables
1. We write X ∼ N (µ, σ2) and say that the random variable X is normal, or Gaussian, with mean

µ and variance σ2, ifX is an absolutely continuous random variable with pdf
1√
2π σ

e−(x−µ)2/(2σ2), x ∈

R. In this case,

Z =
X − µ

σ
∼ N (0, 1)

is called standard normal.
2. If Z ∼ N (0, 1), and a > 0, then

• P (−a < Z < 0) = P (0 < Z < a);
• P (Z > a) = P (Z < −a) = 0.5− P (0 < Z < a);
• P (|Z| > a) = 2P (Z > a);
• P (Z < a) = P (Z > −a) = 0.5 + P (0 < Z < a).

Note: P (Z < a) > 0.5 if and only if a > 0; P (Z > b) > 0.5 if an only if b < 0. For example,

• P (Z < 1.1) = 0.5 + P (0 < Z < 1.1) = 0.8643;
• If you know that P (Z > c) = 0.6179, then c < 0 and P (0 < Z < |c|) = 0.1179, which means
that |c| = 0.3 and c = −0.3.

Drawing a picture of the “Bell Curve” is very helpful

3. If Y1, . . . , Yn are independent so that Yk ∼ N (µk, σ
2
k) and a1, . . . , an are real numbers, then

a1Y1 + . . .+ anYn ∼ N (µ, σ2), where

µ = a1µ1 + . . .+ anµn, σ2 = a21σ
2
1 + . . .+ a2nσ

2
n.

In particular,

• If Yk, k = 1, . . . , n, are iid2 N (µ, σ2), then Y1 + . . .+ Yn ∼ N (nµ, nσ2).
• If Y1 ∼ N (µ1, σ

2
1) and Y2 ∼ N (µ2, σ

2
2) are independent, then Y1 − Y2 ∼ N (µ1 − µ2, σ

2
1 + σ2

2).
• In general, if Yk, k = 1, . . . , n, are independent N (µk, σ

2
k) and ak, k = 1, . . . , n, are real

numbers, then
∑n

k=1 akYk is N (
∑n

k=1 akµk,
∑n

k=1 a
2
kσ

2
k).

The Central Limit Theorem (CLT)
1. Basic result: if X1, . . . , Xn are iid with mean µ and standard deviation σ, and n > 30, then

X1+ . . .+Xn is approximately normal with mean nµ and standard deviation
√
nσ, while the sample

mean X̄n = (X1+ . . .+Xn)/n is approximately normal with mean µ and standard deviation σ/
√
n.

Equivalently,

lim
n→∞

X1 + . . .+Xn − nµ

σ
√
n

= N (0, 1) (in distribution).

2. CLT for Binomial distribution: if np(1− p) > 5, then B(n, p) ≈ N (np, np(1− p)).
In the problems:

(1) Identify the “success” event.
(2) Compute the probability of success p.
(3) Check that np(1− p) > 5.
(4) Use continuity correction by enlarging closed intervals. For example, P (X > m) = P (X ≥

m+ 1) = P (X > m+ 0.5).

(5) Normalize to get standard normal:
X − np√
np(1− p)

≈ N (0, 1).

3. CLT for general distributions:

(1) Compute the expected value and standard deviation for the distribution. If the distribution
is continuous, you might need integration.

1Sergey Lototsky, USC
2independent and identically distributed

1



2

(2) Check whether the question is asking for the sum, or for the sample mean, or for something
else, and then use appropriate normalization.

(3) If the distribution is discrete, use continuity correction, by enlarging closed intervals.

Normal (Gaussian) Vectors
Below, i =

√
−1, (·, ·) is inner product in Euclidean space Rn; C−1 means inverse of the matrix

C; CT means the transpose of C. Vectors written in bold face and are thought of as matrices with
one column.

The following three definitions of a Gaussian vector X = (X1, . . . , Xn) are equivalent:

(1) Eei(X,λ) = ei(λ,µ)−(1/2)(Cλ,λ), λ ∈ Rn, for some vector µ and a symmetric non-negative definite
matrix C [that is, C = CT and (Ca,a) ≥ 0 for all a ∈ Rn]; with this characterization,
µ = EX and C = CXX is the covariance matrix of X:

CXX = E
(
(X − µ)(X − µ)T

)
.

The main consequence of this definition: if the entry in column i and row j of the
matrix CXX is zero [that is, the random variables Xi and Xj are uncorrelated], then the
random variables Xi and Xj are independent. Also, if the matrix CXX is invertible, with
inverse C−1, then, and only then, the vector X has a density (pdf) in Rn:

fX(x) =
1

(2π)n/2
√

det(CXX)
e−

(
x−µ,C−1(x−µ)

)
/2.

(2) (a,X) =
∑n

k=1 akXk is a Gaussian random variable for every fixed a ∈ Rn. The main
purpose of this definition is extension to infinite dimensions.

(3) X = µ + AZ, where Z is a vector with iid standard normal [mean zero variance one]
components and A is a square matrix. In this case, CXX = AAT . The main consequence
of this definition is different representations of the normal vector.

Representations of the normal vector X, with mean µ and covariance CXX , using a vector
Z with iid standard normal [mean zero variance one] components.

(1) The Karhunen-Loève, or KL, expansion (finite-dimensional version) of X is

X = µ+QR1/2Z,

where the orthogonal matrix Q and the non-negative diagonal matrix R satisfy
QRQT = CXX .

(2) The canonical representation of vector X is

X = µ+ LZ,

where L is the lower-triangular matrix in the Cholesky decomposition of CXX : LLT =
CXX . If CXX is not invertible, then additional conditions are imposed to ensure uniqueness
of L.

The multi-dimensional Normal Correlation Theorem (NCT). LetX be a Gaussian vector
in Rn, let Y be a Gaussian vector in Rm. Assume that the combined vector X,Y is Gaussian in
Rm+n and the covariance matrix CY Y of Y is invertible. Then

E(X|Y ) = EX+CXYC
−1
Y Y (Y −EY ), E

(
X−E(X|Y )

)(
X−E(X|Y )

)T

= CXX −CXYC
−1
Y YCY X .

Note that CY X = CT
XY .

For the proof, start by finding a matrix A such that the vector X − EX −A(Y − EY ) and the
vector Y − EY are uncorrelated. The result: A = CXYC

−1
Y Y .

If the matrix CY Y is not invertible, then the result still holds with the generalized or Moore-Penrose
inverse C+

Y Y of CY Y .
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If m = n = 1 and ρ =
E(XY )− µXµY

σXσY

is the correlation coefficient, then the conditional

expectation is the equation of the regression line, with X as a function of Y :

E(X|Y ) = µX + ρ
σX

σY

(
Y − µY

)
.

For the conditional variance, E
(
X −E(X|Y )

)(
X −E(X|Y )

)
= σ2

X(1− ρ2). In particular, we have

Y = µY + σYZ1, X = µX + ρσXZ1 + σX

√
1− ρ2 Z2,

where Z1 and Z1 are iid standard normal (and the equalities are in distribution).

Normal Approximation: Advanced topics
The delta method. If

lim
n→+∞

√
n
(
Zn − µ

)
= N (0, σ2), in distribution,

and f = f(x) is a continuously differentiable function with f ′(µ) 6= 0, then, using Taylor expansion,

lim
n→+∞

√
n
(
f(Zn)− f(µ)

)
= N

(
0, σ2|f ′(µ)|2

)
, in distribution.

The result extends to higher dimensions.

Normal approximation of common distributions

(1) For fixed p, Binomial B(n, p), being a sum of iid B(1, p) is approximately N
(
np, np(1− p)

)
.

(2) For fixed λ > 0, Poisson P(nλ) with mean nλ, being a sum of iid P(λ), is approximately
N
(
nλ, nλ

)
. More generally,

lim
γ→+∞

P(γ)− γ
√
γ

= N (0, 1), in distribution.

(3) For fixed a > 0 and b > 0, the Gamma distribution Gamma(na, 1/b) with shape parameter
na and mean value nab, being a sum of iid Gamma(a, 1/b), is N

(
nab, nab2

)
(4) For fixed a > 0 and b > 0, the Beta distribution Beta(na, nb) is approximately

N
(

a

a+ b
,

ab

n(a+ b)3

)
.

One way to see it is to write

Beta(na, nb) =
Gamma(na, 1)

Gamma(na, 1) + Gamma(nb, 1)
,

with independent Gamma(na, 1) and Gamma(nb, 1), and then apply the two-dimensional
delta method.

Gaussian Processes and Fields

Definition. Given a set T, a collection of random variables X = {X(t), t ∈ T}, is called a
Gaussian process if, for every finite collection {t1, . . . , tn} ⊂ T, the random vector (X(t1), . . . , X(tn))
is Gaussian.

The term “process” is generic. By convention, if T ⊆ R, then X is the (proper) process, and can
also be called a sequence if T is countable. If T ⊆ Rn, n > 1, then X is the field.
The distribution of X, as a random object with values in RT, is defined by

PX(A) = P(X ∈ A), A ∈ B(RT),

and is completely determined by two functions: mean value µ(t) = EX(t), t ∈ T, and covariance
R(t, s) = E

(
X(t)X(s)

)
−µ(t)µ(s), t, s ∈ T. The function R is necessarily non-negative definite:

for all finite collections {t1, . . . , tn} ⊂ T, {a1, . . . , an} ⊂ R,
n∑

k,m=1

akamR(tk, tm) ≥ 0.
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The reason is simple:
∑n

k,m=1 akamR(tk, tm) = E
(∑n

k=1 ak
(
X(tk)− µ(tk)

))2

.

Kolmogorov’s Continuity Criterion (Gaussian case, informal statement) If T ⊆ Rn,

EX(t) = 0, and E
(
X(t) − X(s)

)2 ≤ C|t − s|δ for some C, δ > 0, then the function t 7→ X(t) is
continuous (in fact, Hölder continuous of every order less than δ/2.)

A list of zero mean Gaussian processes

Process Covariance function

Brownian motion (BM) min(t, s), t, s ≥ 0

Brownian bridge min(t, s)− ts, t, s ∈ [0, 1]

Stationary OU e−|t−s|, t, s ∈ R

fractional Brownian motion (fBM) 1
2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R, H ∈ (0, 1)

sub-fractional Brownian motion t2H + s2H − 1
2

(
(t+ s)2H + |t− s|2H

)
, t, s ≥ 0, H ∈ (0, 1)

bi-fractional Brownian motion 1
2k

(
(t2H + s2H)k − |t− s|2Hk

)
, t, s ≥ 0, H ∈ (0, 1), 0 < k ≤ 2, Hk ≤ 1

Brownian sheet
n∏

k=1

min(xk, yk), xk, yk ≥ 0

Lévy’s Brownian motion 1
2

(
|x|+ |y| − |x− y|

)
, x,y ∈ Rn

Gaussian free field (GFF) Green’s function of the Laplacian

“General ideas for generalizations” Given a continuous Gaussian process X = X(t), t ≥ 0,
with mean zero, X(0) = 0, and covariance function R = R(t, s), one can construct

• the X-bridge Xb = Xb(t), t ∈ [0, T ] from (0, 0) to (T, 0) by defining

Xb(t) = X(t)− R(T, t)

R(T, T )
X(T ),

which, by NCT, is conditioning X to hit 0 at time T .
• The X-OU process Y = Y (t), t ≥ 0, as the solution of

dY (t) = aY (t)dt+ dX(t), t ≥ 0, a ∈ R.
Note that, solving the equation and integrating by parts,

Y (t) = Y (0)eat +

∫ t

0

ea(t−s)dX(s) = Y (0)eat +X(t) + a

∫ t

0

X(s)ea(t−s)ds.

• The X-sheet, as a Gaussian random field with covariance function
n∏

k=1

R(xk, yk).

• The Volterra X-process with a suitable kernelK = K(t, s), 0 ≤ s ≤ t, by
∫ t

0
K(t, s) dX(s).


