67

UNIQUENESS FOR THE
HEAT EQUATION 1

When discussing the physical meaning of our solutions for the heat equation we
have, more or less tacitly, assumed that they were unique. To what extent is this
assumption justified?

Problem. Suppose ¢:R x R* — C is infinitely differentiable with

(i) (O/0t)(x,t) = K(0*¢/0x>)(x,t) for all xeR, t>0 [K > 0],
(i) ¢(x,t)>0ast—->0+.

Does it follow that ¢(x,t)=0 for all xeR, t >0?

Our search for an answer to this problem takes us in an unexpected direction.
(There is a fair amount of calculation involved but, so long as she follows the drift
of the argument, the reader need not worry too much about the details.)

Lemma 67.1. (i) x "exp(—1/2x?) <n"? for all x> 0.
(ii) Define h:R—R by

h(x) =exp(—1/2x?) for x>0,
h(x)=0 for x<0.

Then h is infinitely differentiable with
h(x) = Q,(x~ Y)exp(— 1/2x?)  for x>0,
h(x)=0 for x <0,

r
where Q)= Y a it
s=0

and |Gyl <475, for 1> 52 0,7 > 1, whilst ago = 1.
(i) With h as in (ii) we have
[h"(x)| < 25732 for all xeR,r>1.

Remark. This lemma is just a more careful reworking of Example 4.2. Although
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Uniqueness for the heat equation I 339
we give a full proof below the reader may prefer to do it for herself.
Proof. (i) Setting
f(x)=x""exp(— 1/2x?)
we see that
f)=x"""1(—n+x"?)exp(—1/2x?),

so that f” is increasing for x running from 0 to n~* and decreasing for x running
from n™* to 0. Thus

fX)<f(n~ %) forall x>0

(ii) We proceed inductively. Let P(r) be the proposition that his r times differentiable
with

h(x) = Q(x ™ Y)exp(— 1/2x?) forx >0,

h(x)=0 Jorx <0,

r
where 0,0)=Y at**
s=0

and la, | <475

Suppose P(r) is true for some r > 1. If x < 0 it is obvious that A is differentiable
at x with A"+ 1(x) = 0. If x > 0 we see that h® is differentiable at x with

h*D(x) = — x72Q;(x~ ) exp(— 1/2x%) + x73Q,(x ™ ")exp(— 1/2x?)

= Qr+ l(x_ l)exp( - l/zxz),
where

r r r+1
Qr+1(t)= — Zo(r+2s)ar'str+l+25+ Zoar,str+l+2(s+l)= Z a,+1,“t'+l+2u,
s= s= u=0

with iy y=—(r+2ua,,+a,,,
(taking a, _; =a,,,, =0). It follows that
18,41, <3+ Dla, )+ 1a, - | <30+ DA 4 prtimuggrtiprtiou
as required.
Finally if x =0 we see that
KO — K(0)
n
whilst (just as in Example 4.2)
h®(n) — h"(0)
n

since exp t?/2 — oo as t— oo faster than any polynomial. Thus A® is differentiable
at 0 with A"+ V() =0.

=0-0 as n—-»0—,

n7'Q,(n exp(—n"%/2)->0 as -0+,
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Thus if P(r) is true so is P(r + 1). But P(0) is trivially true and a simpler version
of the inductive step above enables us to deduce P(1) from P(0), so P(r) is true for
all r and the stated result is proved.

(iii) Combining (i) and (ii) we have

|KO)| =] Y. a,x ™" 2 exp(—1/2x%)| < Y |a,||x™ "2 exp(—1/2x%)|
s=0 s=0
< X lal(r +9)0+20
s=0

i rrr—s(zr)(r+ 2s)/2 < Z 42rrr—sr(r+ 2s)/2 — 427 Z r3r/2
<25r%2% forall x>0,r>1,
and so [h(x)| < 257372 for all xeR,r>1. |

Lemma 67.2. With the notation of Lemma 67.1, set g(x)= h(x — 1)h(2 — x). Then
g:R— R is an infinitely differentiable function with

@ g(x)=0 for all xe[1,2],
(b) g(x)>0 for all xe(1,2),
() 19™(x)| <22 for all xeR,n> 1.

Proof. Conclusions (a) and (b) are obvious. To check (c) we use Leibnitz’s
formula

OFL)0= 3 ( ) O )RD L))

together with Lemma 67.1 to obtain

lg"eI< ¥ ('r')lh“-"(x— 1)| K02~ )]

i( >25(u r)(n__r)S(n r)/225r 3r/2

X (n 2 (n
< 25n z n3(n—r)/2n3r/2 = 25n Z n3n/2
r=0 \’ r=o\7’

— 25nn3n/2(1 + l)n _— 26nn3n/2
for all x. [
The only major addition to the information already obtained in Example 4.2

(and discussed again at the end of Appendix C) are the bounds on the size of the
derivatives. We use this information to check that certain series converge.
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Lemma 67.3. Let R >0 and an integer k >0 be fixed. Then the infinite sums

i (m+k) t) 2m+l and < g(m+k)(t) 2m
m=0 2m+1)' =0 (2m)!

converge uniformly for all |x| < R,teR.

Proof. The treatment of the two sums is similar so we shall only deal with

© g(m +k)(t) m

m=o (2m)!

Observe first that

(2m)t—[‘[r> [T !> [1 (m8)>8*m™*=2""m™* form>38,

2m=r=mjr 2m>r=m/8
and so, using Lemma 67.2,
26(m+k)(m + k)3(m+k)/2 212m<2m)3(m+k)/2
<
(2m)! 2~ 6my Tmi4

< 22 1mpy3m+ 2= Tmja < D21mp =m/8 for all m > 12(k + 1).

g(m+k)(t)
@2m)!

Thus

g(m +k)(t) X om
(2m)!

< (221R2)mm—m/8 — (221R2m— 1/8)m

for all m > 12(k + 1), |x| <R and teR.

Since m~*—0 as m— oo it follows that 22! R?m~#<27! for large m and so
there exists a constant 4 with

(m +k)(t) )
______ m

< A27™ forall m>0,|x| <R and teR.
2m!

Thus if M > N and |x| < R we have

M
AY 27mL A2 N1 50 as N> 0.
=N

M (m)
g™ () s
<
) m)

m=N (

The principle of uniform convergence now shows that

2 ") o
Z zm)v x?

converges uniformly for all |x| <R, teR. u

The preliminaries are now complete and we can give the answer to the problem
posed at the beginning of the chapter.
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Example 67.4 (Tychonov). Let g be as in Lemma 67.2 and write

© (m)
d(x,t)= Y, g (t)xz"‘.

m=0 (2m)'
Then ¢:R x R— R is infinitely differentiable and

(@) (0¢/0t)(x,t) = (0%¢p/0x?)(x,t) for all (x,t)eR?,
(b) ¢(x,5)=0 for all t¢[1,2], xeR,
© ¢0,5)>0 for all te(1,2).

Proof. By Lemma 67.3, ¢ is well defined and by well known results (e.g. Lemma
53.2) we may differentiate the expression
o g("')(t) om

¢(x9 t) = Z

m=o0 (2m)!

both with respect to x and with respect to t as often as we like to obtain

)

g(m+v)(t) m—u
ax" o X

2m —u)!

(x0=Y

2m>u

In particular,

(@) (09/00)(x,t) = Zp-o(g™* V(B)/2m)1)x>™ = (9> p/0x?)(x, ).

Since g(¢) =0 for all t¢[1,2], g™ (t) = 0 for all t¢[1,2] so

(b) (x,1)=0 for all t¢[1,2], xeR.

Finally, we observe that

© 6(0,2)=g(t)> 0 for all (1, 2). =

A simple modification shows that the solution for the heat flow in a semi-infinite
rod is also not unique.

Example 67.4". Let Y(x,t)=3>2-o(g™(t)/2m + 1))x*>™*1, Then y:Rx R->R is
infinitely differentiable and

@) (9y/or)(x, t) = (2*P/0x>)(x, 1) Jor all (x, t)eR,

(b) ¥Y(x,t)=0 Sor all t¢[1,2], xeR,
(©) (0y/0x)(0,t) #0 and so Y( ,t)#0 for all te[1,2]

d) ¥(0,5)=0 Jor all teR.

Proof. Left as a trivial exercise to the reader. [ ]

(Taking the restriction of y to the region {(x,f):x >0,¢>0} gives a non-zero
solution to the heat equation for a semi-infinite rod whose initial temperature is
0 everywhere and whose end is kept at 0 throughout.)

The new solutions that we have found consist of a great blast of heat from
infinity, and a little thought suggests that the possibility of such solutions spring
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from the fact that the equation used gives no limiting velocity for the propagation
of heat. Thus, provided only it is large enough, a very distant disturbance can
produce a rapid change in temperature near the origin. We may suspect that the
kind of solution described in Example 67.4 cannot occur if we have an equation
like the wave equation where disturbances propagate with a finite velocity, and
that even with the heat equation we can exclude such solutions by imposing a
condition of slow growth at infinity.

To the applied mathematician Example 67.4 is simply an embarrassment remind-
ing her of the defects of a model which allows an unbounded speed of propagation.
To the numerical analyst it is just a mild warning that the heat equation may
present problems which the wave equation does not. But the pure mathematician
looks at it with the same simple pleasure with which a child looks at a rose which
has just been produced from the mouth of a respectable uncle by a passing magician.



