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We study properties of an ensemble of Sudoku matrices (a special type of doubly
stochastic matrix when normalized) using their statistically averaged singular val-
ues. The determinants are very nearly Cauchy distributed about the origin. The
largest singular value is σmax = 45, while the others decrease approximately lin-
early. The normalized singular values (obtained by dividing each singular value by
the sum of all 9 singular values) are then used to calculate the average Shannon en-
tropy of the ensemble, a measure of the distribution of ‘energy’ among the singular
modes and interpreted as a measure of the disorder of a typical matrix. We show
the Shannon entropy of the ensemble to be 1.7331± 0.0002, which is slightly lower
than an ensemble of 9 × 9 Latin squares, but higher than a certain collection of
9×9 random matrices used for comparison. Using the notion of relative entropy, or
Kullback-Leibler divergence, which gives a measure of how one distribution differs
from another, we show that the relative entropy between the ensemble of Sudoku
matrices and Latin squares is on the order of 10−5. By contrast, the relative en-
tropy between Sudoku matrices and the collection of random matrices has the much
higher value, being on the order of 10−3, with the Shannon entropy of the Sudoku
matrices having better distribution among the modes. We finish by ‘reconstituting’
the ‘average’ Sudoku matrix from its averaged singular components.

Keywords: Sudoku matrices; Shannon entropy; Singular value decompostion;
Random matrices; Latin squares; Wishart matrices

1. Introduction.

A Sudoku matrix, A, is a 9 × 9 real valued matrix with an integer between 1 and
9 in each entry, so long as the following constraints are obeyed:

1. Each integer can appear only once along any row;

2. Each integer can appear only once down any column;

3. Each integer can appear only once in each of the 9, 3× 3 sub-blocks.

Without the last ‘regional’ constraint, the matrix is usually called a 9 × 9 Latin
square, whereas without any of the constraints, if the integer in each entry is chosen
with equal probability of 1/9, we call it a random matrix. It was recently proven by
Felgenhauer and Jarvis (2006) that there are exactly 6, 670, 903, 752, 021, 072, 936, 960 ≡
9!× 722 × 27 × 27, 704, 267, 971 ∼ 6.67× 1021 Sudoku matrices. Their enumeration
strategy begins by analyzing the permutations of the top 3 × 3 sub-block used in
valid Sudoku grids. Once these sub-block symmetries and equivalence classes for the
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partial solutions are identified, the other sub-blocks are constructed and counted
for each equivalence class. Russell and Jarvis (2006) showed that if symmetries are
taken into account (using Burnside’s lemma), there are significantly fewer – only
5, 472, 730, 538 of them. Both of these numbers are small compared with 981, the
total number of random matrices, or the total number of 9×9 Latin squares, which
is known to be O(1027) (Bammel & Rothstein (1975)). In fact, taking the ratio of
Felgenhauer and Jarvis’ number over 981 gives the miniscule empirical probabil-
ity of 3.3927 × 10−56 of producing a Sudoku matrix by using a random number
generator to select each integer entry independently, without explicitly building in
the constraints. An example of a Sudoku matrix is shown in figure 1 and can be
found in many major daily newspapers as a popular number game, whose modern
version was apparently invented by the American architect Howard Garns in 1979,
but whose ancestry dates back at least to Euler. A ‘Sudoku game’ starts with a few
squares filled in (for example, the darkened numbers in figure 1), and the reader
must fill in the rest (the lighter numbers in figure 1), obeying the above constraints
to create a Sudoku matrix, a classic problem in constrained combinatorial optimiza-
tion theory (Simonis (2005)). If all but one of the squares are filled in initially, it
is easy to see that there is a unique value for the remaining square, and hence the
final Sudoku matrix is unique and the problem is said to be well-posed. However,
if none of the squares are filled in initially, there are many ways to fill them in
(ill-posed) to arrive at a final Sudoku matrix, namely all of the ones counted by
Felgenhauer and Jarvis (2006). The fewest number of filled in squares that renders
the solution unique is unknown, although the lowest number yet found is 17. The
general problem of solving Sudoku puzzles on n2 × n2 boards of n × n blocks is
known to be NP-complete (Yato & Seta (2005)). A rapidly evolving discussion of
the current state-of-the-art regarding the ‘Mathematics of Sudoku’ can be found at
the url: http://en.wikipedia.org/wiki/Mathematics of Sudoku.

In this paper, we focus on the statistical properties of Sudoku matrices, not
on strategies for solving Sudoku puzzles. Progress on computer algorithms to solve
Sudoku puzzles (using ‘Sinkhorn balancing’) are discussed in Moon, Gunther, and
Kupin (2009) and comprehensive strategies are described in Davis (2009). Here,
we mostly discuss average properties of ensembles of Sudoku matrices as opposed
to specific properties of individual matrices. Of course, we first highlight the main
properties that all Sudoku matrices making up an ensemble must share (discussed
in the next section). Given the constraints imposed on the entries, we address the
question of how random is a Sudoku matrix? We answer this question by creating
an ensemble of Sudoku matrices from which we study the statistically averaged
singular value distributions and Shannon entropy of the ensemble which gives us
a scalar measure of how evenly distributed are the rank-one matrices whose linear
combination constitutes an ‘average’ matrix, as detailed in the text. In section 3
we describe the algorithm we use to generate Sudoku matrices, one of which is
shown in figure 1. Section 4 discusses the singular value decomposition of Sudoku
matrices, which we then use to calculate their (average) Shannon entropy. For
comparison purposes, we calculate the Kullback-Leibler divergence between the
ensemble of Sudoku matrices and a corresponding ensemble of Latin squares and
random matrices.
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6 9 4 1 7 8 3 5 2

5 1 7 3 2 4 9 8 6

1 2 6 9 8 5 7 4 3

7 4 5 2 6 3 8 1 9

9 8 3 7 4 1 2 6 5

4 6 1 8 3 2 5 9 7

3 5 9 4 1 7 6 2 8

8 7 2 6 5 9 1 3 4

Figure 1. An arbitrary Sudoku matrix. Each of the integers 1 thru 9 appears only once
down each column, along any row, and in each of the 3 × 3 sub-blocks. With only the
27 darkened numbers showing, a Sudoku game consists of filling in all the lighter colored
numbers to produce a complete Sudoku matrix.

2. Basic properties

The following properties hold for any Sudoku matrix:

1. Because of constraint 1, every Sudoku matrix A has eigenvalue λ = 45, with
corresponding eigenvector η = (1, 1, 1, ..., 1)T ;

2. Because of constraint 2, the transpose of every Sudoku matrix AT has eigen-
value λ = 45, with corresponding eigenvector η = (1, 1, 1, ..., 1)T ;

3. Because of constraint 3, we have AT 6= A;

4. Because of constraint 3, we have ATA 6= AAT , and λ = 452 is an eigenvalue
of the covariance matrices AAT and ATA;

5. Because of constraint 3, we have 18 ≤ Trace(A) ≤ 72. This is because the
smallest value for the trace in any 3 x 3 sub-block is 1+2+3=6, while the
largest value is 7+8+9=24.

Sudoku matrices can be singular, as the following example shows.

Example 2.1: The following Sudoku matrix has one eigenvalue that is zero, with
corresponding eigenvector ~ξ:
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A =



8 3 5 9 4 7 6 2 1
7 6 1 2 5 8 3 9 4
2 4 9 6 1 3 5 7 8
5 1 3 7 8 2 9 4 6
6 2 4 3 9 1 8 5 7
9 8 7 4 6 5 1 3 2
3 7 6 1 2 9 4 8 5
4 5 2 8 3 6 7 1 9
1 9 8 5 7 4 2 6 3


; ~ξ =



382
1723
−554
−122
−1148
−1364
1669
355
−941


(2.1)

Sudoku matrices can be highly structured as in the following example.

Example 2.2: The following Sudoku matrix is produced with an initialized top
row containing values 1 −→ 9. The second row is obtained from the top row by
applying a left-shift of three entries (to accommodate the block constraint). The
third row is obtained from the second row by applying a left-shift of three entries.
The fourth row starts a new 3 × 3 block, hence we obtain it from the top row by
applying a left-shift of one entry. Rows 5 and 6 are produced from the row above
by a left-shift of three entries. Row 7 starts a new block and is obtained from row
4 by applying a left-shift of one entry. The final two rows are obtained from the
rows above them by applying the left-shift of three entries. The result is a highly
structured yet valid Sudoku matrix:

A =



1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8


. (2.2)

Remark. Every Sudoku matrix can be made into a doubly stochastic matrix (row
and column sums equal to 1) by dividing each entry by 45. This normalized matrix,
M , can then be viewed as a finite Markov chain with 9 states, each of which is
recurrent and aperiodic (Grimmett and Stirzaker (2005)). The stationary distribu-
tion, a vector π such that π ∗M = π, is a left eigenvector of M with eigenvalue 1,
and it follows immediately from basic property 2 that the vector of all ones is a left
eigenvector of M , hence normalizing to obtain a probability distribution, we have
π = (1/9, . . . , 1/9). Note that Latin Squares have the same stationary distribution,
as they satisfy basic condition 2 as well.

As an indication of the distribution of the eigenvalues (specifically, their prod-
ucts), a histogram of the determinants of an ensemble of 10,000 Sudoku matrices
(see Section 3 for the details of construction) is shown in figure 2 along with the
sample mean, standard deviation, and smallest and largest values from the sample.
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Figure 2. Histogram of determinants of 10,000 Sudoku matrices which appears to
closely follow a standard Cauchy distribution, plotted as a solid curve. The sample
median is -98820, and the sample mean is −570352.2660, with standard deviation
0.56719630860983× 108. The smallest determinant from the sample is −551886210 while
the largest is 355398840.

Plotted together with the histogram is a Cauchy distribution:

fξ(x) ≡ C(c, s) =
1
π · s

1

1 +
(
x−c
s

)2 (2.3)

which appears to closely model the data (if the entries are not selected uniformly,
this would not be the case). Recall that the Cauchy distribution has no defined
mean, variance, or higher order moments, while its mode and median are c (the
peak of the distribution), with s being the scale parameter specifying the half-width
at half-maximum. Interestingly, the central limit theorem predicting convergence
to a Gaussian distribution does not apply because the variance is not finite. Generi-
cally, the Cauchy distribution arises when we take the ratio U/V of two independent
Gaussian distributed random variables U , V , with expected values 0 and unit vari-
ances. We use the parameter estimation techniques described in Nagy (2006) to
determine the parameter values s = 2.155× 107 and c = −2.902× 105. The deter-
minants from the sample range from ±108, with a sample median value −98820.
All of the members of the ensemble had either rank 8 (somewhat special) or rank 9
(more typical) and we believe it is not possible for a Sudoku matrix to have a zero
eigenvalue with algebraic multiplicity more than one, but we have not been able to
prove this. The recent article of Dahl (2009) discusses other general properties of
Sudoku matrices.

3. The Sudoku Algorithm

(a) Algorithm description

An ideal (unbiased) random Sudoku generator would index each of the approx-
imately 1021 Sudoku matrices by an integer, and a uniformly distributed random
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integer between 1 and 1021 would be chosen corresponding to one of the matrices.
The task of pre-assembling and working with 1021 matrices, however, has obvious
drawbacks.

Instead, our algorithm for producing Sudoku matrices proceeds one row at a
time, starting with the first row and working down to the bottom. First, a selection
array consisting of the admissible integers 1 through 9 is created and an index
integer, j, between 1 and 9 is chosen at random, with uniform distribution. The
jth number in the selection array is placed in row/column/block = r/c/b = 1/1/1
of the Sudoku matrix. This entry is then deleted from the selection array, leaving
8 remaining entries. To select the next entry of the Sudoku matrix, a new index
integer is picked at random, this time between 1 and 8. This new index is then
used to choose the next member of the selection array and placed in r/c/b =
1/2/1 of the Sudoku matrix. The process continues until the top row of the Sudoku
matrix is filled and all entries of the selection array have been used. The remaining
rows are generated in a similar manner, one entry at a time, with the additional
preliminary step of reducing the set of admissible values based on the constraints
in the corresponding r/c/b. In the event of encountering an entry with no possible
admissible values, that entire row and the row preceeding it are deleted (called
the back-stepping procedure) and the process continues as before, starting with
the first empty row. As an alternative to the back-stepping procedure, we could
simply empty the matrix and re-start the algorithm from scratch each time the
algorithm runs into a dead end, but it is far faster and more efficient to implement
the back-stepping procedure, clearing only two rows. This algorithm seems to be
fast and efficient and can easily generate 10, 000 Sudoku matrices in matters of
seconds (using C code on a laptop computer).

(b) Ensemble bias

The question is whether the algorithm produces an ensemble that is unbiased.
Namely, we need the smaller sample produced by the algorithm to have the same
statistical properties that a full ensemble of all 1021 matrices would have. For this,
we describe a necessary condition that any unbiased sample ensemble of Sudoku
matrices must have. The following simple facts are used. First, notice that given
any Sudoku matrix, a new Sudoku matrix can be produced by globally switching
any two numbers. For instance, we can switch the numbers 1 and 2 everywhere
in the Sudoku matrix (2.2), and the result of the switch will produce a new, less
structured, but valid Sudoku matrix. From this, it follows that:

Lemma b.1. Given a valid Sudoku matrix, we may construct an additional 9!− 1
distinct Sudoku matrices.

Proof. Consider the set of all permutations of the numbers 1 through 9, and create
a 1-1 mapping from the set {1, . . . , 9} to each of the permutations by matching the
nth entry in {1, . . . , 9} to the nth entry in the permutation. For each permutation,
a distinct Sudoku matrix may be obtained by replacing the number in each cor-
responding entry of the given Sudoku matrix with the corresponding entry in the
permutation.

An ensemble of Sudoku matrices produced this way is an equivalence class.
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Lemma b.2. If the values of all Sudoku matrices in an equivalence class are av-
eraged together component-wise, the resulting matrix is the rank one matrix with 5
in each entry.

Proof. The proof is clear by symmetry. Every entry will have each of the numbers
1 through 9 in it an equal number of times in the ensemble of 9!− 1 matrices.

Thus, as in (2.2), we can initialize a given Sudoku matrix by choosing the matrix
in the equivalence class that has the first row {1, 2, 3, 4, 5, 6, 7, 8, 9}. Proceeding this
way will give a standardized way of looking at the distribution of matrices generated.
Finally, since the matrices in each equivalence class average to the rank one matrix
with 5 in each entry, we can average these averages and obtain the same matrix.
This gives us the following:

Lemma b.3. If the values of all Sudoku matrices are averaged together component-
wise, the resulting matrix is the rank one matrix with 5 in each entry.

Therefore, we would like any subset of the full set of Sudoku matrices to inherit
this property.

Theorem b.4. A necessary condition that a set of Sudoku matrices is unbiased
is that the component-wise average of the ensemble produce the rank one matrix
with 5 in each entry.

The extent to which the sample average deviates from this rank one average is a
measure of possible bias of the ensemble. (3.1) shows the component-wise average
of 108 Sudoku matrices generated by the algorithm which is acceptable for our
purposes. Of course, more detailed and stringent tests could be developed, as in
those discussed in Jacobson and Matthews (1996) for Latin squares, but we regard
our relatively weak test sufficient for our purposes.

A =



4.9982 4.9975 5.0020 4.9964 4.9995 5.0001 5.0022 5.0019 5.0022
5.0031 4.9976 5.0001 5.0014 5.0019 4.9999 5.0013 4.9973 4.9973
5.0017 4.9998 5.0001 5.0006 5.0003 4.9999 4.9985 4.9982 5.0010
5.0027 4.9997 5.0000 5.0000 5.0000 4.9970 4.9994 4.9998 5.0015
5.0011 4.9997 4.9969 4.9982 5.0020 5.0017 5.0000 5.0017 4.9986
5.0002 5.0010 4.9987 5.0031 4.9978 5.0002 4.9997 5.0002 4.9991
4.9980 5.0002 4.9995 5.0027 4.9974 4.9998 4.9999 5.0015 5.0010
4.9987 5.0034 5.0017 4.9983 4.9988 4.9995 4.9995 5.0005 4.9996
4.9962 5.0011 5.0011 4.9993 5.0024 5.0019 4.9995 4.9989 4.9996


.

(3.1)

4. Ensemble analysis

Our main tool in the analysis of Sudoku matrices is the singular value decompostion
and the resulting calculation of Shannon entropy (Shannon (1948)) for the ensemble
of matrices which we now describe.
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(a) Singular value decomposition and Shannon entropy

To obtain the singular value decomposition of A, we find the nine eigenvalues
λi, (i = 1, ..., 9) of the associated covariance matrix ATA

ATA~vi = λi~vi (4.1)

where λi ≥ 0, ~vi ∈ R9.† The singular values, σi are defined as σi =
√
λi. Equiva-

lently, one can define the singular values and singular vectors directly via the system
of linear equations

A~vi = σi~ui; AT~ui = σi~vi, (4.2)

where σmax ≡ σ1 ≥ σ2 ≥ ... ≥ σmin ≡ σ9 ≥ 0, and the unit vectors ~vi and ~ui are
called the right and left singular vectors, respectively. We use them as columns to
construct the 9× 9 orthogonal matrices U , V defined as

U = (~u1 ~u2 ... ~u9) ; V = (~v1 ~v2 ... ~v9) , (4.3)

which produces the singular value decomposition of A (Kirby (2001))

A = UΣV T =
9∑
i=1

σi~ui~v
T
i . (4.4)

Σ is the diagonal matrix with singular values down the diagonal, ordered from
largest (top left) to smallest (bottom right), with corresponding right and left sin-
gular vectors filling in the columns of V and U from left to right:

Σ =


σmax 0 · · · 0 0

0 σ2 · · · 0 0
...

...
. . .

...
...

0 · · · · · · σ8 0
0 · · · · · · 0 σmin

 . (4.5)

From (4.4), one can see that the singular value decomposition expresses A as the
sum of rank one matrices, and does so in an optimal way. Namely, if we define the
rank-k approximation to A, where k < 9, by forming the sum

Ak =
k∑
i=1

σi~ui~v
T
i , (4.6)

then ‖A − Ak‖2 ≡ σk+1, where ‖ · ‖2 represents the 2-norm. It is a standard the-
orem in linear algebra (Kirby (2001)) that any matrix B that is not the rank-k
approximation (4.6) has greater error:

‖A−Ak‖2 ≤ ‖A−B‖2, (4.7)

† We note that there are similarities here to the well studied Wishart matrices whose distribu-
tion arises from the sample covariance matrix obtained from a multivariate normal distribution.
These arise frequently in the study of spectral theory of random matrices (Sengupta & Mitra
(1999)). Also note that sample covariance matrices are well known to be sensitive to statistical
outliers.
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where B is any 9 × 9 matrix of rank k. Each of the matrices ~ui~vTi in (4.6) are
rank-one and should be thought of as the ‘normal modes’ whose weighted linear
combination produces the matrix Ak.

It is useful to normalize the singular values by dividing each by the sum of
all nine, so that the normalized values lie in the range between 0 and 1 and can
be used to determine the distribution of ‘energy’ over all the singular modes. The
normalized values are defined as

σ̂i = σi/

9∑
i=1

σi; 0 ≤ σ̂i ≤ 1. (4.8)

From these, we define the Shannon entropy to be

H = −
9∑
i=1

σ̂i ln(σ̂i), (4.9)

which provides us with a scalar measure of the distribution of ‘energy’ among
the modes, which is typically interpreted as the level of disorder, or randomness,
associated with the matrices as well as a measure of how rapidly the normalized
singular values decay from the peak (i = 1). The next two examples give further
insight into the relation between the Shannon entropy of a matrix and its singular
value distribution.

Example 4.1: All orthogonal matrices have the property AT = A−1, hence AAT =
I. Therefore each eigenvalue of the covariance matrix λi = 1, which when normal-
ized gives equal singular values σ̂i = 1

9 , (i = 1, ..., 9). Therefore, the Shannon
entropy for any 9 × 9 orthogonal matrix is H = −

∑
σ̂i ln σ̂i = ln 9 = 2 ln 3 =

2.1972 = Hmax, which is the maximal value that H can achieve for the 9× 9 case.
Normalized singular value distributions that are evenly distributed among all the
available modes correspond to maximum entropy states.

Example 4.2: The 9× 9 matrix with 1’s in every entry has the property that its
covariance matrix has 9’s in each entry. Therefore, the covariance matrix has rank
1 and nullspace dimension 8 which means there are 8 normalized singular values
that are zero, and one that is exactly 1. The Shannon entropy for this case is 0,
which is the minimal value that H can achieve. Singular value distributions that
have all the energy clustered into a single mode are minimum entropy states.

From these two examples, one sees that distributions of singular values that
drop off rapidly from the peak value correspond to lower entropy matrices than
those that are flat. The flattest distribution, where all normalized singular values
are equal in height corresponds to the matrix with maximum entropy.

It is also useful to define the notion of ‘percentage of compression’ a given matrix
achieves with respect to the maximal entropy matrix. Hence, given a Sudoku matrix
A, define

H̃ =
2 ln 3−H

2 ln 3
∗ 100 (4.10)

From the previous examples, orthogonal matrices of example 1 have H̃ = 0% com-
pression, while minimum entropy matrices of example 2 have H̃ = 100% compres-
sion.
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Example 4.3: The singular value decomposition of the Sudoku matrix shown in
example 2.1 gives rise to matrices U , Σ, V :

U =



−0.3333 −0.1515 −0.5041 0.4468 0.1031 0.4343 −0.3210 −0.1106 0.3124
−0.3333 0.2834 −0.2010 −0.4892 0.4398 −0.0053 −0.1160 0.5589 0.0979
−0.3333 0.0258 0.6106 0.2963 −0.0829 0.4490 0.2630 0.3862 0.0286
−0.3333 −0.5261 0.0066 −0.1856 −0.1015 0.0614 −0.3054 0.0449 −0.6843
−0.3333 −0.3819 0.0677 −0.5251 −0.2410 0.0445 0.2604 −0.2846 0.5039
−0.3333 0.2816 −0.4823 0.0924 −0.3406 −0.0698 0.5955 0.0101 −0.3047
−0.3333 0.4400 0.2478 −0.0923 0.3491 0.1334 −0.0584 −0.6632 −0.2057
−0.3333 −0.3020 0.0999 0.3728 0.4243 −0.6516 0.1906 0.0007 0.0880
−0.3333 0.3306 0.1548 0.0839 −0.5503 −0.3959 −0.5088 0.0576 0.1639



Σ =



45.0000 0 0 0 0 0 0 0 0
0 13.9679 0 0 0 0 0 0 0
0 0 10.6715 0 0 0 0 0
0 0 0 9.3370 0 0 0 0 0
0 0 0 0 9.0413 0 0 0 0
0 0 0 0 0 5.6280 0 0 0
0 0 0 0 0 0 4.6463 0 0
0 0 0 0 0 0 0 2.9711 0
0 0 0 0 0 0 0 0 0.0000



V =



−0.3333 −0.0802 −0.6393 −0.1292 0.1009 0.2984 0.5638 0.1610 −0.1184
−0.3333 0.4910 −0.0342 0.1143 −0.1193 −0.5735 0.0727 0.0008 −0.5340
−0.3333 0.2366 0.2449 0.3496 −0.5422 0.4283 0.1939 −0.3258 0.1717
−0.3333 −0.3341 −0.1063 0.6025 −0.0547 −0.0325 −0.3432 0.5289 0.0378
−0.3333 −0.2027 −0.2590 −0.4817 −0.4841 −0.3246 −0.2655 −0.1092 0.3558
−0.3333 0.3386 −0.2049 0.1510 0.5896 −0.0229 −0.2530 −0.3443 0.4227
−0.3333 −0.5105 0.1447 −0.0724 0.1777 0.1517 −0.2035 −0.4884 −0.5172
−0.3333 0.3194 0.3173 −0.4700 0.0959 0.4021 −0.2813 0.4508 −0.1100
−0.3333 −0.2580 0.5368 −0.0641 0.2361 −0.3270 0.5161 0.1263 0.2916


Notice that the first term, σ1~u1~v

T
1 , in the partial sum representation (4.6) gives rise

to the rank-one matrix (minimal Shannon entropy as in example 4.2)

A1 =



5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5


, (4.11)
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where each entry is the arithmetic average of the allowable digits 1 through 9 in
each column, row, or 3×3 sub-block.† If we normalize the singular values down the
diagonal of Σ:

σ̂1 = .4444; σ̂2 = .1379; σ̂3 = .1054; σ̂4 = .0922; σ̂5 = .0893;
σ̂6 = .0556; σ̂7 = .0459; σ̂8 = .0293; σ̂9 = 0.000, (4.12)

we obtain a value of the Shannon entropy H = 1.7137 and a compression factor of
22%.

In the next section, we calculate the Shannon entropy and percentage of com-
pression of an ensemble of Sudoku matrices generated by our algorithm.

(b) Ensemble averages

To generate an ensemble of Sudoku matrices, we run the algorithm described
above N times, denoting each realization of a Sudoku matrix A(j). The singular
values for the jth realization are denoted σ

(j)
max ≡ σ

(j)
1 ≥ σ

(j)
2 ≥ ... ≥ σ

(j)
min ≡

σ
(j)
9 ≥ 0 and their corresponding left and right singular vectors are denoted ~u

(j)
i

and ~v(j)
i (i = 1, ..., 9) respectively. We define the ensemble average of the collection

of matrices

〈A〉N =
1
N

N∑
j=1

A(j); 〈A〉∞ = lim
N→∞

〈A〉N (4.13)

as well as the ensemble averages of the singular components:

〈σi〉N =
1
N

N∑
j=1

σ
(j)
i ; 〈σi〉∞ = lim

N→∞
〈σi〉N , (4.14)

〈~ui〉N =
1
N

N∑
j=1

~u
(j)
i ; 〈~ui〉∞ = lim

N→∞
〈~ui〉N , (4.15)

〈~vi〉N =
1
N

N∑
j=1

~v
(j)
i ; 〈~vi〉∞ = lim

N→∞
〈~vi〉N . (4.16)

The standard deviation of each quantity is denoted with double brackets 〈〈·〉〉N .
If we first normalize the singular values from each member of the ensemble as in
(4.8), i.e.

σ̂
(j)
i = σ

(j)
i /

9∑
i=1

σ
(j)
i , (4.17)

and then perform the ensemble averages, we denote the averaged normalized values

〈σ̂i〉N =
1
N

N∑
j=1

σ̂
(j)
i ; 〈σ̂i〉∞ = lim

N→∞
〈σ̂i〉N , (4.18)

with standard deviations 〈〈̂·〉〉N .
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minj σ̂
(j)
i maxj σ̂

(j)
i 〈σ̂i〉N 〈〈σ̂i〉〉N

σ̂1 0.41311204510567 0.48811216599382 0.44232319538594 0.00000000195716

σ̂2 0.09417944510957 0.19182448301596 0.13072369442204 0.00000000017089

σ̂3 0.08503464489795 0.15303595644309 0.11196765935169 0.00000000012601

σ̂4 0.06033117834183 0.12811546927484 0.09571062185255 0.00000000009163

σ̂5 0.03574065500616 0.10800399513199 0.07987968644928 0.00000000006386

σ̂6 0.02072019503703 0.09220340904337 0.06259759902184 0.00000000003946

σ̂7 0.00624284569488 0.07760803395316 0.04383380668260 0.00000000001941

σ̂8 0.00060920223256 0.06662384524882 0.02506384156452 0.00000000000974

σ̂9 0 0.04757243788525 0.00789989526931 0.00000000000113

Table 1. Table of minimum value, maximum value, sample mean and standard deviation
for the 9 ensemble averaged and normalized singular values based on a sample size of
N = 108.

Figure 3. Ensemble average of each of the nine singular values for N Sudoku matrices,
where N = 1, ..., 10, 000. The horizontal (dashed) line in each plot is 〈σ̂i〉10,000, with value
shown.

The averaged normalized singular values (4.18) are shown in figure 3 for N =
1, ..., 10, 000. Each is seen to converge (the law of large numbers) to a sample mean
value denoted by 〈σ̂〉∞. The distribution of the nine values is shown in figure 4
(data points), along with error bars (black) showing one standard deviation and
the spread of all the data about the mean (red). The singular values decrease very
nearly linearly. Histograms of each of the averaged normalized values are shown in
figure 5, along with their Gaussian fits. Table 1 shows the nine sample mean values
〈σ̂i〉N , their standard deviations and variances for N = 108.

We denote the Shannon entropy of the jth member of the ensemble to be

H(j) = −
9∑
i=1

σ̂
(j)
i ln σ̂(j)

i (4.19)

† In fact, this will always be the case since the constraints imply that 45 is an eigenvalue of A
and AT , with corresponding eigenvectors (1, 1, ..., 1) and (1, 1, ..., 1)T .
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Figure 4. Distribution of the normalized singular values of the ensemble of Sudoku matrices
in descending order. The dots denote the sample mean, with error bars showing one
standard deviation about the mean and the spread of all the data with a least squares
line (dashed) to the first eight singular values (the scale of the x-axis is arbitrary). The
computed correlation coefficient is r2 = 0.9993. The unfilled circles denote the singular
values of a typical Sudoku matrix selected randomly, while the unfilled squares denote the
singular values from (2.2).

Figure 5. Histograms of the nine singular values for the ensemble of N = 10, 000 Sudoku
matrices. The spread around the mean appears to follow a Gaussian distribution reason-
ably well. The smallest singular value has an approximate half-Gaussian spread (centered
at 0).

with ensemble average

〈H〉N =
1
N

N∑
j=1

H(j); 〈H〉∞ = lim
N→∞

〈H〉N , (4.20)

and standard deviation 〈〈H〉〉N . A histogram of the averaged Shannon entropy is
shown in figure 6, along with a Gaussian fit to the data. The ensemble averaged
Shannon entropy has sample mean value 〈H〉108 = 1.73312 and standard deviation
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0.000173. The smallest entropy achieved in the sample was 1.512975, whereas the
largest was 1.881064. A convergence plot of the Shannon entropy is shown in figure
7 for N = 1, 2, ..., 10, 000. If we use this sample mean value in (4.10) to calculate the
ensemble averaged percentage of compression of a collection of Sudoku matrices,
we arrive at

〈H̃〉 =
(

2 ln 3− 〈H〉∞
2 ln 3

)
∗ 100 ≈

(
2 ln 3− 1.73312

2 ln 3

)
∗ 100 = 21%. (4.21)

This value is slightly lower than the corresponding value for a collection of 108 9×9
Latin squares, which has Shannon entropy 1.73544±0.0001735. On the other hand,
a collection of random matrices has the much lower entropy value of 1.65128 ±
0.0001656 giving a 25% compression factor.

Figure 6. Ensemble averaged Shannon entropy with N=10,000, with sample mean value
1.73221822064708 and standard deviation 0.03996073536463. Histogram is shown along
with Gaussian distribution.

Remark. When comparing two distributions, the relative entropy, or Kullback-
Leibler Divergence, gives a measure of how likely the first distribution will resemble
the second (Kullback and Leibler (1951)). This value is defined as

h(a, p) =
n∑
i=1

ai ln
ai
pi
, (4.22)

where a = (a1, . . . , an) and p = (p1, . . . , pn) are the two distributions being com-
pared. Note that h(a, p) 6= h(p, a). It has already been established that the entropy
for Sudoku matrices and Latin squares is similar, so naturally their relative en-
tropy should be small. Indeed this is the case, as this value (if ai corresponds to
the Sudoku distributions and pi corresponds to Latin squares) turns out to be
h(a, p) = 9.74107032 × 10−6 ≈ 10−5. To put this in perspective, the relative en-
tropy between Sudoku matrices and random matrices is 0.004044 ≈ 5 ∗ 10−3, two
orders of magnitude higher, and nearly the same as the relative entropy between
Latin squares and random matrices, which is 0.0042812.
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Figure 7. The Shannon entropy of the ensemble of N = 1, ..., 10, 000 Sudoku matrices.
The horizontal line (dashed) shows the approximate converged sample average.

5. Matrix reconstitution

One might ask what the ‘typical’ Sudoku matrix looks like in terms its decomposi-
tion (4.4). For this, we use the ensemble averaged singular vectors 〈~ui〉N , 〈~vi〉N to
construct the matrices 〈~ui〉N 〈~vTi 〉N , along with the averaged singular values 〈σi〉N .
The ‘reconstituted’ matrix is then defined to be

〈Ak〉N =
k∑
i=1

〈σi〉N 〈~ui〉N 〈~vTi 〉N , (5.1)

which yields an optimal rank-k ensemble averaged Sudoku matrix. We display below
the matrices with N = 108 for k = 3, 6, and 9:

A3 =



4.9975 4.9996 5.0014 4.9963 5.0011 5.0010 5.0009 5.0012 5.0009
5.0038 4.9980 4.9988 5.0007 5.0022 4.9997 5.0002 4.9981 4.9985
5.0013 4.9997 4.9995 5.0009 5.0002 4.9998 4.9999 4.9994 4.9995
5.0014 4.9997 4.9994 5.0010 5.0002 4.9997 4.9998 4.9993 4.9995
5.0009 4.9988 5.0000 4.9988 5.0016 5.0003 5.0005 4.9995 4.9996
5.0005 5.0012 4.9993 5.0029 4.9981 4.9993 4.9991 4.9998 4.9999
4.9986 5.0018 5.0000 5.0018 4.9975 4.9996 4.9992 5.0008 5.0006
4.9978 5.0011 5.0007 4.9995 4.9988 5.0002 4.9999 5.0011 5.0009
4.9983 5.0000 5.0009 4.9981 5.0003 5.0005 5.0004 5.0008 5.0006


,

(5.2)
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A6 =



4.9981 4.9974 5.0018 4.9965 4.9998 4.9999 5.0021 5.0020 5.0024
5.0029 4.9974 4.9997 5.0016 5.0023 5.0001 5.0006 4.9971 4.9983
5.0016 5.0001 5.0004 5.0006 5.0003 4.9990 4.9995 4.9986 4.9999
5.0031 4.9997 5.0003 4.9997 4.9993 4.9975 4.9995 4.9996 5.0012
5.0011 4.9998 4.9969 4.9982 5.0019 5.0017 5.0001 5.0017 4.9984
5.0001 5.0009 4.9985 5.0033 4.9982 5.0001 4.9994 5.0003 4.9994
4.9982 5.0003 4.9996 5.0025 4.9970 5.0000 5.0002 5.0014 5.0008
4.9984 5.0031 5.0012 4.9985 4.9994 4.9996 4.9986 5.0004 5.0007
4.9966 5.0012 5.0015 4.9991 5.0018 5.0021 4.9999 4.9989 4.9989


,

(5.3)

A9 =



4.9982 4.9975 5.0020 4.9964 4.9995 5.0001 5.0022 5.0019 5.0022
5.0031 4.9976 5.0001 5.0014 5.0019 4.9999 5.0013 4.9973 4.9973
5.0017 4.9998 5.0001 5.0006 5.0003 4.9999 4.9985 4.9982 5.0010
5.0027 4.9997 5.0000 5.0000 5.0000 4.9970 4.9994 4.9998 5.0015
5.0011 4.9997 4.9969 4.9982 5.0020 5.0017 5.0000 5.0017 4.9986
5.0002 5.0010 4.9987 5.0031 4.9978 5.0002 4.9997 5.0002 4.9991
4.9980 5.0002 4.9995 5.0027 4.9974 4.9998 4.9999 5.0015 5.0010
4.9987 5.0034 5.0017 4.9983 4.9988 4.9995 4.9995 5.0005 4.9996
4.9962 5.0011 5.0011 4.9993 5.0024 5.0019 4.9995 4.9989 4.9996


.

(5.4)

Figure 8. Singular values for the rank k = 3, 6, 9 matrices of the ensemble average. Each
shows a spectrum similar to the rank-one matrix of all 5’s.

Given the discussion at the end of §3 with respect to the extent to which our
sample is unbiased, the convergence to the rank one matrix (4.11) is expected. By
subtracting the matrix (4.11) from Ak, k = 3, 6, 9, the singular value spectrum
should go to zero. We show this in Figure 8. Each shows one dominant non-zero
singular value with the eight others close to zero.
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6. Summary

The normalized distribution of singular values and corresponding Shannon entropy
for an ensemble of Sudoku matrices provides a quantitative measure of the level
of ‘disorder’ inherent in the collection by characterizing the weighting of the nine
rank-one ‘modes’ ~ui~vTi used in reconstituting the ‘average’ Sudoku matrix and
allows for comparisons with the related ensembles of Latin squares and random
matrices obtained by dropping the regional constraint 3, and all three constraints
respectively. Our conclusions based on these comparisons are that the ensemble av-
eraged Shannon entropy of the collection of Sudoku matrices is slightly lower than
a collection of Latin squares, but higher than a collection of appropriately chosen
random matrices. Thus, the extra constraints imposed on the Latin squares and
Sudoku matrices serve to increase their Shannon entropy as compared to what it
would be without the constraints imposed (random matrices), forcing a more even
distribution among the singular modes. This is consistent with the fact that the
set of random matrices includes matrices of all possible rank, including matrices
with rank one. Low rank matrices have lower Shannon entropy than high rank ones,
pulling the average of the ensemble down. Why the more constrained Sudoku ma-
trices have a lower average Shannon entropy than the less constrained ensemble of
Latin squares is not obvious, nor is it clear that the differences in these averages are
statistically significant, or that our methods are sufficiently sensitive to distinguish
between such subtle differences.
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