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Introduction

In general, we perceive simultaneous discrete 
frequencies to be more pleasing if the frequen-
cies have simple ratio relationships with each 
other. In fact, in the classical western theory of 
music, the perfect fifth is the most consonant 
pitch pair, and in the ideal case the frequency 
ratio between the fundamentals of the pitches 
would be three to two. By contrast, a dissonant 
pitch pair, the minor second, has a frequency 
ratio between the fundamentals of about sixteen 
to fifteen. 

This study examines an effect called inharmo-
nicity as it applies to a single plucked musical 
string. When a musical string vibrates, it carries 
many discrete frequencies called harmonics. In 
the ideal case, these harmonics would vibrate 
with frequencies that are perfect integer multi-
ples of the fundamental, the lowest frequency 
being carried by the string. Inharmonicity, in the 
case that this study addresses, is the behavior 
where harmonics are pulled higher than their 
ideal values, and the effect becomes more pro-
nounced as the order of the harmonic increases. 
A very inharmonic string may even sound out 
of tune with itself, which might give the string a 
harsh sound with undesirable resonances.

The model that is tested in this study was 
brought into the active literature by NH Fletcher 
in the 1960’s.1 It places the cause of inharmonic-
ity solely on the stiffness of the string material. 
The equation from which this model is created 
is: 

Where u is mass per unit length, T is the string 
tension, S is the cross-sectional area, K is half 
of the radius of the string and E is Young’s mod-
ulus. Young’s modulus for a string is a measure 
of its resistance to changes in length. In other 
words, it is a measure of the string’s stiffness, 
so it can be said that it is the parameter that is 
the first cause for inharmonicity. Equation (1) 
differs from the wave equation for an ideal string 
only by the addition of the term that involves 
the fourth derivative of the displacement of the 
string from its equilibrium position. So, if the 
string had no stiffness, E would equal zero, 
there would be no extra term in this modified 
wave equation, and there would be no inharmo-
nicity in the string.

The solutions to equation (1) carry the same as-
sumptions as do the solutions for the ideal wave 
equation: The string has uniform linear density, 
it is under constant tension, and the displace-
ment of the string is small enough that tension 
for any infinitesimal segment does not vary as 
it vibrates. The solutions also assume that the 
ends of the vibrating section of the strings are 
supported, such as a guitar string at the bridge 
or the nut, or a piano string. This assumption 
leads to the mathematical statements that at the 
ends of the string:
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That is the string is stationary on the support, 
and: 

The consequence of this mathematical state-
ment is that the influence of the stiffness of the 
string material does not travel over the support. 
In other words, there is no affective curvature of 
the string over the support. The string can be 
considered to begin and end at the supports, 
and for any given instant the slope of the string 
on the support is constant. 

Solving equation (1) will provide a prediction 
for the frequencies that will be carried by a stiff 
string in the form:

Where n is the order of the harmonic.    is the 
fundamental frequency of the string if it had no 
stiffness. This is governed by the equation:

B is a parameter that contains information about 
the physical properties of the string.

There are some things to notice about the pa-
rameter B in the frequency equation. B is the 
parameter that describes the degree of inharmo-
nicity of a given string. As B is multiplied by the 
square of the order of the harmonic, its effect is 
magnified for higher harmonics. Also, the rela-
tionship for frequencies carried by an ideal string 
can be recovered by setting the string’s stiffness, 
E, to zero, which would make B zero, which 
would leave .

The definition of B also shows that inharmonicity 
can be lessened by increasing the tension or the 
length of the string, or it can be magnified by in-

creasing the string’s stiffness or diameter. Clear-
ly, a builder of plucked or hammered stringed 
musical instruments will be forced to balance the 
different factors that affect inharmonicity. It is not 
an effect that can be fully eliminated in any prac-
tical way.

So, musical string inharmonicity is not merely an 
academic curiosity. It is an effect that musicians, 
instrument makers, and other music adjacent 
professions deal with on a conscious level. This 
can be seen in the form of instruments. One of 
the reasons the sound of a grand piano is pref-
erable to a console piano is because the longer 
strings lessen the inharmonicity. The less affect-
ed harmonic frequencies are then more resonant 
between different pitches, as the frequency rela-
tionships will be closer to simpler ratios.

Piano tuners also deal with inharmonicity in a 
direct way. They will stretch the octaves of the 
piano, which causes the higher registers to sit 
a little sharper than would be ideal. Of course, 
matters of musical perception are complicated, 
and any statement about what is good or prefer-
able is bound to come with many caveats. Some 
say that the octave stretching on a piano help 
make it “livelier.” 2

The struggle with inharmonicity can also be seen 
in the form and function of guitars. Guitarists will 
often retune strings to make the overtones res-
onate in a preferable way in a given key. The G 
string, which is the thickest unwound string on a 
standard electric guitar, is notorious for present-
ing tuning difficulties for the guitarist. Its harmon-
ics can sound harsh, and methods such as de-
tuning the string slightly are employed to lessen 
the effect.  Inharmonicity also helps to explain 
why bass guitars have much longer necks. Math-
ematically, the low frequencies on a bass guitar 
could be achieved by maintaining the short scale 
length of a standard guitar and increasing the 
strings’ mass per unit length (thicker strings), 
or by placing them under much less tension. 
However, doing those two things would increase 
the inharmonicity of the strings to a degree that 
would border on unmusical. So, the design of an 
instrument, in view of inharmonicity, becomes a 
balancing act between the factors that define it. 

Background

The foundations for this research were laid by 
Rayleigh in his Theory of Sound in the 1870s3 
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and further developed by Fletcher in the 1960s.1,4 
The final form of the equations that we use come 
from Fletcher’s The physics of musical instru-
ments, but he laid out the math in an earlier pa-
per1. In that paper, Fletcher measured the inhar-
monicity of a string for each note on a Hamilton 
upright piano. His measurements covered both 
the plain, monofilament strings that are found in 
the midrange and upper registers of the piano, 
as well as the wound strings that are found in 
the lower registers of the piano. In the paper B 
values were derived from the dimensions of the 
strings, as it was impractical to remove strings 
from the piano to make measurements about 
their properties. This led to difference in B calcu-
lations between wound and plain strings. It was 
found that there is an extra torque provided by 
windings, and after all of the aforementioned is 
accounted for, it was concluded that equation (2) 
gives a good approximation for the frequencies 
of the harmonics of each string. 

Fletcher also notes that a previous paper of his 
found that “the excellence of the tone from a pi-
ano can not be said to be greater or less as the 
value of B becomes greater or less. There must 
be an optimum value of B for each string and 
this value has not yet been found. It is certainly 
not B=0, which would mean that all the partials 
should be harmonic.” 

In the literature, there is a large body of research 
examining inharmonicity as it pertains to pianos. 
Inharmonicity has long been the explanation for 
the stretched octaves of a tuned piano. To un-
derstand why, consider the concept of beats. 
When two pitches are played on a piano simulta-
neously, the combined volume will be a fluctua-
tion of the sound intensity. The rate at which the 
intensity completes a cycle from loud to soft is 
called a beat. For example, if a 440Hz tone and 
442Hz tone are played together, there will result 
a beat frequency of 2 Hz. While tuning a piano, it 
is desirable to maintain a particular beat frequen-
cy for a certain interval across the range of the 
instrument. Due to inharmonicity, it is necessary 
to stretch the octaves to create the desired beat 
frequencies5.

There is also research involving the inharmonic-
ity of guitar strings, with some of it centering on 
the psychoacoustic aspects of the phenomenon. 
The form of the guitar lends itself to high levels 
of inharmonicity. The relatively short scale length 
and the low tension of the strings, relative to an 

instrument like a piano, are the main reason for 
a level of inharmonicity great enough that the 
inharmonicity of a single guitar strings can be 
perceptible to a listener. Järveläinen6 created lis-
tening experiments for steel and nylon stringed 
guitars. Real recordings were used to create a 
parametric model of the guitar tones so that the 
inharmonicity of the tones could be controlled. 
Through the listening experiments, a threshold 
was found for the perceptibility of inharmonicity 
that was close to typical values found on the gui-
tar. It was also found that the inharmonicity was 
more or less detectable depending on whether 
or not the attack transients were cropped out. 
This type of understanding of inharmonicity has 
uses for digital instrument sound synthesis, 
where sound creators may want to be able to 
consider all the factors that make a certain tone 
sound realistic. 

There is also an inharmonicity related explana-
tion for the phenomenon of wound guitar strings 
“going dead” after some amount of playing time. 
When a string “goes dead,” it has a dull sound 
with shorter sustain. Houtsma7 found that this is 
due to the increased inharmonicity of a well-used 
wound guitar string. Houtsma simulated the 
stretching and releasing that is done by playing 
a guitar string and found that it caused a mass 
redistribution that causes greater inharmonicity 
in the partials. This inharmonicity then makes it 
harder to tune the string exactly and gives it less 
self-resonance which creates the dull, quick-
ly-decaying characteristic.

Clearly, musical string inharmonicity is a phenom-
enon that has its consequences in many different 
areas of the practice of music, from instrument 
and sound design, to tuning and performance. 
It is something that has been grappled with on 
a practical level by musicians and music-related 
professionals ever since the creation of stringed 
instruments whose strings are excited by pluck-
ing or striking. 

This research seeks to extend the understand-
ing of musical string inharmonicity by examining 
strings of varying constructions and materials 
using the modern tools available today. Fletch-
er’s equation is used to provide an expectation 
of behavior for inharmonic partials on a string, 
and audio recordings are used to provide the 
data about the actual behavior of the string to be 
compared to the expected behavior. This work 
differs from previous work in two ways. First, we 
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measure the properties of each string directly, 
such as its dimensions. Each string’s Young’s 
modulus and its mass per unit length is also 
measured instead of derived as in previous work. 
As stated in the introduction, the Young’s modu-
lus, the stiffness of the string material, is the first 
cause of inharmonicity in a string’s behavior, so 
measuring it directly represents an acknowledg-
ment of this importance. 

The second differentiating component to this 
study is the variety of strings that are measured 
and examined. We look at monofilament steel 
guitar strings, that is strings that do not vary in 
material or geometry across their cross section, 
and we look at wound steel guitar strings. We 
also examine the applicability of Fletcher’s equa-
tion to nylon guitar strings. Nylon does not pro-
vide the same type of linear response to stretch-
ing that steel does in the range of tensions on 
a guitar, so it is not clear that inharmonicity will 
behave the same way for nylon strings. Further-
more, we look at the wound strings of a nylon 
set of strings. The wound strings on a nylon set 
are of a totally different construction than wound 
steel guitar strings. The nylon wound strings 
have a core made of a thread of nylon filaments, 
so it is interesting to examine how that affects 
the inharmonicity.  

Methodology

Each string was examined in two ways, the or-
der of which was determined by practical con-
siderations. First, the string’s material properties 
were measured, so that they could be used with 
equation (4) to predict a value for their B param-
eter, which is, in effect, a measure of their inhar-
monicity. Second, audio of the vibrating string 
was recorded. With the audio data, a Fast-Fou-
rier Transform provided the discrete frequencies 
that were present in the audio sample. These fre-
quencies were then used to perform a chi-square 
fit using equation (2) to provide an experimental 
value for the B parameter that could be com-
pared against the value that was predicted from 
material measurements. The two different values 
for B and the associated uncertainties for each 
string are then compared. 

As previously noted, the order in which these two 
methods for obtaining a value for the B param-
eter was performed was determined by practi-
cal considerations. For the nylon strings, it was 
necessary to use strings that were “settled.” In 

practice, nylon strings will complete many cycles 
of tensioning and stretching before they reach 
an equilibrium that allows them to hold a steady 
pitch for a usable length of time. With this in mind, 
the nylon strings used in this study were installed 
on a guitar and retuned daily for 2 weeks to al-
low them to settle. During this time the strings 
were not played, other than the plucks required 
to pitch them back up to the desired operating 
tension. With the nylon strings installed on the 
guitar, audio samples were recorded. Then the 
strings were removed, and the dimensions and 
Young’s modulus were measured.

For the steel strings, the strings’ dimensions and 
Young’s modulus were measure first, and then 
they were installed on a monochord apparatus 
where audio samples were recorded.

Strings’ diameters were measured with a mi-
crometer caliper, and length measurements were 
done with a meter stick. Uncertainties for these 
measurements were taken from the tolerances of 
the measurement devices.

Measuring Young’s Modulus

Young’s modulus, E, is a measure of a material’s 
resistance to changes in length, so to measure 
the Young’s modulus for a string, it is necessary 
to measure the force provided after measured 
changes in length.

A given string was clamped at both ends. At 
one end the clamp was attached to two Pasco 
force sensors. At the other end, it was attached 
to a movable stage. The stage was then moved 
to put the string under a tension that would be 
slightly higher than its vibrating tension, around 
80N for steel strings and around 60N for nylon 
strings. As the tension was progressively less-
ened throughout the measurements by moving 
the stage to reduce the string length, the tension 
values would pass through the tension that would 
be used when recording audio of the string as it 
vibrated. An example of a plot produced by this 
procedure is shown in figure 1.

For wound strings, the clamps were only at-
tached at segments of exposed cores, and the 
area used for the Young’s modulus calculation 
was taken to be the area of the core.

It should be noted here that the measurements 
for nylon strings had to be done rather quickly, to 
compensate for the “settling” behavior previous-
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Figure 1 – Scatter plot of the data for the resistance to changes in length for 
an Ernie Ball .011” steel string. The slope of the trendline of this data gives the 
Young’s modulus.

Figure 2 – Plot of output of a FFT from an audio sample of an Ernie Ball .011” 
steel string. The peaks seen here represent the frequencies present on the 
string. The inset shows higher harmonic frequencies whose peaks are not visible 
at the original scaling of the plot. 
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ly described. When a change is made in the nylon 
string’s length, the tension immediately responds 
as expected, but it will quickly rebound toward 
the tension it had before the change in length. 
Since the minuscule changes in tension while vi-
brating occur at rates around hundreds of hertz, 
fast measurements in this procedure would be 
most relevant to the behavior examined in this 
study. The values for stiffness obtained are in 
general agreement with a study done by Lynch-
Aird and Woodhouse8 in which the mechanical 
properties of nylon strings were examined.

Measurements were plotted and the Young’s 
modulus was given by the slope of a linear chi-
square fit. The uncertainty for the Young’s mod-
ulus was taken from the result of the chi-square.

Audio Samples

Audio samples were mono recordings taken at 
a sample rate of 44.1 kHz with a sample length 
of 4-8 seconds. Although longer sample lengths 
can, in theory, provide more precise outputs for 
discrete frequencies, the higher harmonics on a 
musical string die out rather quickly. Since the 
amplitude for a frequency in the output of a FFT 
is, loosely speaking, a measure of its presence 
in the sample, a long sample length will cause 
short-lasting frequencies to get lost in any noise 
in the sample.

Audio samples were always recorded by 2 
sources concurrently. Microphones, provided by 
a Zoom H4n handheld recorder and an LG V20, 
were used for the nylon strings. For the steel 
strings, a piezo pickup and an electromagnetic 
pickup wer used. 

Strings were each plucked in varying locations. 
The intensities of the different harmonic frequen-
cies present on a vibrating string are determined 
largely by the placement of the pluck attack. For 
example, if a pluck is performed near the end of 
the string, the higher order harmonics will be em-
phasized. Varying the location of the pluck attack 
in the audio samples provided a more complete 
picture of the string behavior.

Samples from different sources corresponding 
to the same pluck attack were aligned, and the 
pluck transients were clipped off the front of the 
wave forms, then the desired sample length was 
exported into Origin. The result of this proce-
dure was, for each string, multiple samples from 

varying sources and varying placements of the 
pluck attacks. This data was used to aid in the 
distinguishing of frequencies originating from the 
string from any other source of noise.

While determining the frequencies present on 
the string, a single source was chosen to provide 
the exact frequencies, while the other sources 
were used as indicators that a given frequency 
originated from the string and not elsewhere. A 
plot representative of one used in the above pro-
cedure is shown in figure 2. In many spectra, it 
was possible to clearly see harmonics of the 50th 
order or greater.

After the string frequencies were determined, 
they were plotted, and a chi-square fit was per-
formed using equation (2). This provided an ex-
perimental value for B, and the uncertainty for 
this value was taken from the output of the func-
tion fit. An example of this function fit is shown 
in figure 3.

Results and Discussion

The following charts show the results for the 
monofilament strings that were tested. These 
were the types of strings for which the model was 
derived. It should be noted that guitar strings la-
belled as nickel are typically nickel-plated steel. 
Both the steel and the nylon strings performed 
well, which was not completely expected since 
the microstructures of the materials are so differ-
ent. It was not obvious that they should behave 
so similarly when viewed through the lens of this 
project.

The uncertainties for the values are too small to 
display in the graph. Generally, they were about 
2 orders of magnitude smaller than the principal 
values. Half of the monofilament strings tested 
did not provide overlapping value ranges for the 
B values, but almost all of those only disagreed 
by a one to two percentage points or less. There 
is also no strong pattern of the material measure-
ments providing greater or lesser values of the B 
parameter when compared to the audio-derived 
B value, or vice versa. 

The largest disagreement between the B values 
provided by the 2 different testing methods oc-
curred with the 22-mil piano steel. There are very 
plausible lines of speculation for this disagree-
ment. One being the stiffness of the piano wire 
interfered with the required end conditions of the 
string. The testing apparatus was not capable 
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Figure 3 – Plot of the observed harmonic frequencies obtained from Figure 2, along 
with the fit function’s output and the fit line.
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Figure 4 – Scatter plot of the results for the monofilament strings.
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of tensioning the string to an amount that would 
eliminate arcing of the string over the support. 
It is also possible that for a string of this thick-
ness, the tension was not great enough to keep 
the string perfectly stationary over the support. 
This would help explain the behavior of the other 
thicker steel strings that can be seen in figure 4. 
During the research, this was an early reminder 
that string vibration and inharmonicity are phe-
nomena that are quickly complicated by viola-
tions of the assumptions that allow the derivation 
of normal frequencies from the wave equation.

More examples of complicated inharmonicity 
behavior can be observed in the results for the 
wound strings.

The geometry and varying composition of wound 
strings violates the assumptions of the model, 
but it was interesting to test the behavior. The 
windings on the strings serve the purpose of in-
creasing the mass per unit length, ideally with-
out affecting the other properties of the string. 
Increasing the mass per unit length allows a 
string to support lower frequencies without hav-
ing to decrease tension or increase the string 
length. None of the value ranges for the 2 testing 
methods provided overlaps in the results for the 
wound strings. In general, the material measure-
ments provided a lower B value than did the fre-
quency measurements. This pattern is reversed 

Figure 5 – Scatter plot of the results for wound strings.

in the wound nylon strings. The core of wound 
nylon strings is loose thin nylon filaments held 
together by the metal windings of the string. As 
such, it was exceedingly difficult to measure a 
valid cross-sectional area that could be used in 
the calculation for the respective Young’s moduli.

The wound string results show the general trend 
of thicker strings being more inharmonic than 
thinner strings. The difference in the B values be-
tween the 2 testing methods is greater for thicker 
strings. With the steel strings, the line fit B be-
ing consistently greater than the material derived 
B suggests some systematic behavior. Modern 
guitar string manufacturing techniques favor us-
ing hex shaped cores for the wound strings. It is 
possible that the sharp edges of the hex shape 
dig into the windings and the interaction creates 
an extra restoring force that increases the inhar-
monicity. This supposition is supported by the 
round core wound strings offering less difference 
between their respective B values than the hex 
core wound strings.

Conclusion

This study demonstrated the effectiveness of 
attributing the inharmonic behavior of musical 
strings to the stiffness of the string material. For 
monofilament strings, the value of the B param-
eter derived from material measurements was 
overall in good agreement with the value derived 
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from audio samples. This conclusion holds for 
both steel and nylon strings. Although some of 
the uncertainty ranges did not overlap, for mono-
filament strings the disagreement was within one 
or two percentage points of the B values. For the 
wound strings, the disagreement between the 
B values is not surprising. The model we tested 
does not account for non-monofilament string 
constructions. It is likely that there is an interac-
tion between the windings and the core of the 
string which further complicates the behavior of 
the string.
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