
Mercer’s Theorem and Related Topics1

The Original Result: Mercer’s theorem2 Let K = K(t, s) be a function defined on [0, T ]×
[0, T ]. Assume that the function K has the following properties:

(1) Continuous:
(s, t) 7→ K(s, t) is continuous on [0, T ]× [0, T ]; (1.1)

(2) Symmetric:
K(s, t) = K(t, s), t, s ∈ [0, T ]; (1.2)

(3) Positive semi-definite/non-negative definite:∫ T

0

∫ T

0

K(t, s)f(t)f(s) dsdt ≥ 0 for all f ∈ L2((0, T )) (1.3)

Then

K(t, s) =
∑
m≥1

φm(t)φm(s)

σm

, (1.4)

where

φm(t) = σm

∫ T

0

K(t, s)φm(s) ds, m ≥ 1,

∫ T

0

φm(t)φn(t) dt =

{
1, m = n,

0, m 6= n,
(1.5)

and the series in (1.4) converges absolutely and uniformly on [0, T ]× [0, T ]:

lim
M,N→∞

max
0≤s,t≤T

M∑
m=N+1

|φm(t)φm(s)|
σm

= 0

so that

lim
N→∞

max
0≤s,t≤T

∣∣∣∣∣K(t, s)−
N∑

m=1

φm(t)φm(s)

σm

∣∣∣∣∣ = 0.

Proof. Recall that L2((0, T )) is a separable Hilbert space with norm ‖f‖ =
√

(f, f)0 generated

by the inner product (f, g)0 =
∫ T

0
f(t)g(t) dt.

Once we have the appropriate technical set-up that guarantees existence of the functions φm and
numbers σm in (1.5) (Steps (i), (ii)), it is rather straightforward to establish equality (1.4) in
L2((0, T ) × (0, T )), in the sense that the two expressions define the same integral operator (Step
(iii).). Proving the equality point-wise (Step (iv)) is more complicated: it requires some a priori
continuity of the right-hand side of (1.4) and essentially relies on (1.3).
Step (i). Define the operator K : L2((0, T )) → L2((0, T )) by

K : f(t) 7→ K[f ](t) =

∫ t

0

K(t, s)f(s) ds. (1.6)

Direct computations show that the operator K is

• Linear: K[af + bg] = aK[f ] + bK[g], a, b ∈ R, f, g ∈ L2((0, T )).
• Bounded: using the Cauchy-Schwarz inequality,

|K[f ](t)|2 ≤
(∫ T

0

K2(t, s) ds

)
·
(∫ T

0

f 2(t) dt

)
,

and then

‖K[f ]‖ ≤ CK‖f‖, CK =

(∫ T

0

∫ T

0

K2(t, s) ds

)1/2

. (1.7)

• Symmetric (and hence self-adjoint): by (1.2),

(K[f ], g)0 = (f,K[g])0, f, g ∈ L2((0, T )). (1.8)
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• Non-negative: by (1.3),

(Kf, f)0 ≥ 0, f ∈ L2((0, T )). (1.9)

Step (ii). Slightly more sophisticated analysis shows that the operator K is not just bounded
but compact (for example, because (1.7) implies that K is Hilbert-Schmidt, which is even better
than compact). Then the general theory of compact self-adjoint operators implies (1.5):

• The operator K has at most countably many eigenvalues λk, and, by (1.3), λk ≥ 0;
• All eigenvalues of K are non-defective and all non-zero eigenvalues have finite multiplicity;
• The corresponding eigenfunctions φm, satisfyingK[φm] = λmφm, form an orthonormal basis
in L2((0, T )), so that, for every f ∈ L2((0, T )),

f(s) =
∞∑

m=1

(f, φm)0 φm(s), (1.10)

∫ T

0

|f 2(s)| ds =
∞∑

m=1

(f, φm)
2
0, (1.11)

and (1.10) is the equality in L2((0, T )).
3

In particular, the numbers σm in (1.5) satisfy σm = 1/λm for λm > 0; if λm = 0, then the
corresponding function φm does not appear in (1.4).
Step (iii). We can now establish equality (1.4) in L2((0, T ) × (0, T )). To begin, note that,

because K is (jointly) continuous, each of the functions φm corresponding to λm > 0 is continuous.
Indeed, using (1.5) and Cauchy-Schwarz,

lim
h→0

|φm(t+ h)− φm(t)| ≤ σm lim
h→0

(∫ T

0

(
K(t+ h, s)−K(t, s)

)2
ds

)1/2

= 0.

For N ≥ 1, consider

KN(t, s) =
N∑

m=1

φm(t)φm(s)

σm

. (1.12)

Each function KN is continuous on [0, T ]× [0, T ] and defines the corresponding operator KN that
is positive semi-definite and compact (being of finite rank). It remains to show that

K̄ = lim
N→∞

KN exists in L2((0, T )× (0, T )). (1.13)

Then the corresponding operator K̄, being a strong limit of compact operators, is also compact,
and the equality K̄ = K holds because the operators have the same (non-zero) eigenvalues.

To establish (1.13), note that, because the function K is continuous, we can fix t and consider
the corresponding function f : s 7→ K(t, s) as an element of L2((0, T )). The first equality in (1.5)
can now be written as (

K(t, ·), φm

)
0
=

φm(t)

σm

,

so that (1.10) and (1.11) become

K(t, s) =
∑
m≥1

φm(t)

σm

φm(s), (1.14)

∫ T

0

K2(t, s) ds =
∑
m≥1

φ2
m(t)

σ2
m

for every t ∈ [0, T ]. (1.15)

In particular, integrating both sides of (1.15) with respect to t yields∑
m≥1

1

σ2
m

=

∫ T

0

∫ T

0

K2(t, s) dsdt. (1.16)

3as opposed to point-wise in s ∈ [0, T ]
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As a result, for M > N ,∫ T

0

|KM(t, s)−KN(t, s)|2 ds =
M∑

m=N+1

φ2
m(t)

σ2
m

; (1.17)

integrating with respect to t and using (1.16),

lim
M,N→∞

∫ T

0

∫ T

0

|KM(t, s)−KN(t, s)|2 dsdt = lim
M,N→∞

M∑
m=N+1

1

σ2
m

= 0,

and then completeness of L2((0, T )× (0, T )) implies K̄ = limN→∞ KN .
Step (iv). By (1.17), we now have equality (1.14) in L2((0, T )) with respect to s for each fixed

t, which is still not the same as point-wise in (t, s). Because the function K is continuous and
symmetric, we will be able to claim point-wise equality once we show that the right-hand side of
(1.14) is a continuous function of s for each fixed t.

To begin, notice that condition (1.3) implies K(t, t) ≥ 0; otherwise, continuity of K will make
it possible to violate (1.3) with a suitable choice of the function f that is positive and has support
near the point t0 where K(t0, t0) < 0. On the other hand, by (1.12) and (1.14),∫ T

0

∫ T

0

(
K(t, s)−KN(t, s)

)
f(t)f(s) dsdt =

∑
m>N

(f, φm)
2
0

σm

≥ 0.

In other words, the function K − KN is continuous and positive semi-definite for each N and
therefore K(t, t)−KN(t, t) ≥ 0, or

N∑
m=1

φ2
m(t)

σm

≤ K(t, t) ≤ AK , where AK = max
0≤t≤T

K(t, t). (1.18)

The left-hand side of (1.18) is non-decreasing in N for each t and therefore has a finite limit as
N → ∞. As a result, (1.18) implies absolute convergence of the series in (1.14): for every M > N ,
by Cauchy-Schwarz,

M∑
m=N+1

|φm(t)φm(s)|
σm

≤

(
M∑

m=N+1

φ2
m(t)

σm

)1/2

·

(
M∑

m=N+1

φ2
m(s)

σm

)1/2

≤

AK

(∑M
m=N+1

φ2
m(t)
σm

)1/2
, for fixed t,

AK

(∑M
m=N+1

φ2
m(s)
σm

)1/2
, for fixed s.

(1.19)

In fact, the second inequality in (1.19) shows that the convergence in (1.14) is uniform in s for
fixed t and uniform in t for fixed s. Because each φm is continuous, we now have continuity of the
right-hand side of (1.14) in of s for each fixed t, and therefore the point-wise equality

K(t, s) =
∑
m≥1

φm(t)φm(s)

σm

, (t, s) ∈ [0, T ]× [0, T ]. (1.20)

Next, we recall Dini’s theorem: If a non-decreasing (or non-increasing) sequence of continuous
functions converges point-wise on a closed bounded interval to a continuous function, then the
convergence is uniform.
We now note that the function t 7→ K(t, t) is continuous and, by (1.20), is a point-wise limit of

a non-decreasing sequence
∑N

m=1 φ
2
m(t)/σm, N ≥ 1:∑

m≥1

φ2
m(t)

σm

= K(t, t). (1.21)

Dini’s theorem then implies that the convergence in (1.20) is uniform for t = s:

lim
M,N→∞

max
0≤t≤T

M∑
m=N+1

φ2
m(t)

σm

= 0. (1.22)
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When combined with the first inequality in (1.19), equality (1.22) implies uniform convergence
of the series in (1.20):

lim
M,N→∞

max
0≤s,t≤T

M∑
m=N+1

|φm(t)φm(s)|
σm

= 0

and therefore

lim
N→∞

max
0≤s,t≤T

∣∣∣∣∣K(t, s)−
N∑

m=1

φm(t)φm(s)

σm

∣∣∣∣∣ = 0,

completing the proof of the theorem.

Two immediate corollaries: under conditions (1.1)–(1.3),∑
m≥1

1

σm

=

∫ T

0

K(t, t) dt,
∑
m≥1

1

σ2
m

=

∫ T

0

∫ T

0

K2(t, s) dsdt ≡
∫ T

0

(∫ T

0

K(t, s)K(s, t)ds

)
dt;

the first follows from (1.21) after integrating both sides; the second is (1.16). More generally, if

K(1)(t, s) = K(t, s), K(N)(t, s) =

∫ T

0

K(N−1)(t, u)K(u, s) du, N > 1.

then

K(N)(t, s) =
∑
m≥1

φm(t)φm(s)

σN
m

, (1.23)

∑
m≥1

1

σN
m

=

∫ T

0

K(N)(t, t) dt, (1.24)

and, for each N ≥ 1, the series in (1.23) converges absolutely and uniformly. Moreover, if N ≥ 2,
then absolute and uniform convergence in (1.23) holds without condition (1.3) [Note that K(2) sat-
isfies (1.3) even if K does not].

Some related results
Theorem. [Hilbert-Schmidt] If K = K(t, s) satisfies (1.1) and (1.2), and

f(t) =

∫ T

0

K(t, s)g(s) ds

for some g ∈ L2((0, T )), then

f(t) =
∑
m≥1

(g, φm)0
σm

φm(t), t ∈ [0, T ], (1.25)

and the series in (1.25) converges absolutely and uniformly.
Proof. Once we have (1.4) in L2, equality (1.25) is automatic. Absolute and uniform convergence

follow by Cauchy-Schwarz:(
M∑

m=N+1

∣∣∣∣(g, φm)0
σm

φm(t)

∣∣∣∣
)2

≤

(
M∑

m=N+1

(g, φm)
2
0

)
·

(
M∑

m=N+1

φ2
m(t)

σ2
m

)
,

keeping in mind that
∑

m≥1(g, φm)
2
0 ≤ ‖g‖2, and, by (1.15),

∑
m≥1 φ

2
m(t)/σ

2
m =

∫ T

0
K2(t, s) ds.

Corollary. If λ 6= σm for all m, then, for every continuous function f = f(t), the solution of the
integral equation

h(t) = λ

∫ T

0

K(t, s)h(s) ds+ f(t), t ∈ [0, T ],

is unique and is given by

h(t) = λ
∑
m≥1

(f, φm)0
σm − λ

+ f(t).
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Theorem. [Steklov] Consider the eigenvalue problem for the Sturm-Liuoville operator:

−
(
p(x)φ′(x)

)′
+ q(x)φ(x) = λφ(x), x ∈ (0, L),

aφ(0)− bφ′(0) = 0, Aφ(L) +Bφ′(L) = 0. (1.26)

with p continuously differentiable and strictly positive on [0, L], q continuous and non-negative on
[0, T ], and non-negative numbers a, b, A,B satisfying a+ b > 0 and A+B > 0. Assume that λ = 0
is NOT an eigenvalue [which happens if q is not identically equal to zero or if at least one of the
numbers a or A is not equal to zero.]
Then

(1) there are countably many eigenvalues λk, each eigenvalue is positive and simple, and the
corresponding eigenfunctions φk can be chosen to satisfy (φk, φm)0 = 0, k 6= m and ‖φk‖ = 1;

(2) for every function f that is continuously differentiable on [0, L], satisfies the boundary con-
ditions (1.26) and is twice continuously differentiable on (0, T ) with f ′′ ∈ L2((0, T )), the
equality

f(x) =
∞∑

m=1

(f, φk)0 φk(x)

hods for all x ∈ [0, L] and the series converges absolutely and uniformly in [0, L].

Proof.4 The result follows from the Hilbert-Schmidt theorem once we show that the correspond-
ing Green’s function is continuous and symmetric in [0.L]× [0, L] and the function f is in the range
of a suitable integral operator.

Generalizations
The role of conditions (1.1)–(1.3).

• Condition (1.1) (continuity) and (1.3) (positivity) are used to establish uniform convergence
in (1.4); mean-square convergence holds without either continuity or positivity as long as
the number CK from (1.7) is finite, but uniform convergence can fail without (1.3): take
a continuous periodic function F = F (t) for which the Fourier series does not converge at
every point, and then consider K(t, s) = F (t− s).5

• For some purposes, such as the Hilbert-Schmidt theorem, continuity of K can be relaxed to

ess supt

∫ T

0

K2(t, s) ds < ∞.

• Symmetry is used to ensure that eigenvalues exist and all of the eigenvalues are real.

Extension to complex-valued functions is straightforward: just add complex conjugation here
and there. In particular, (1.2) becomes

K(t, s) = K(s, t). (1.27)

Generalization 1:6 Let M be a compact finite-dimensional manifold and let µ be a bounded
linear functional on the space C(M) of continuous complex-valued functions on M, with the extra
property that µ[f ] > 0 for every f ∈ C(M) satisfying f ≥ 0, f 6≡ 0. If K = K(x, y) is a continuous
complex-valued function on M×M satisfying (1.27) and∫

M

∫
M
K(x, y)f(x)f(y)µ(dx)µ(dy) ≥ 0, f ∈ C(M),

then

K(x, y) =
∑
m≥1

φm(x)φm(y)

σm

, (1.28)

4V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, 1971; page. 277
5On the other hand, if a continuous periodic function has non-negative complex Fourier coefficients, then Mercer’s

theorem implies that the Fourier series converges absolutely and uniformly.
6K. Jörgens, Linear Integral Operator, Pitman Books Ltd., 1970; Theorem 8.11.
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where

φm(x) = σm

∫
M
K(x, y)φm(y)µ(dy), σm > 0,

∫
M
φm(x)φn(x)µ(dx) =

{
1, m = n,

0, m 6= n,
(1.29)

and the series in (1.28) converges absolutely and uniformly.

Generalization 2:7 If

• X =
(
X,B(X), µ

)
is a finite positive measure space;

• K = K(x, y) is bounded complex-valued function on X satisfying (1.27) and∫
X

∫
X
K(x, y)f(x)f(y)µ(dx)µ(dy) ≥ 0, f ∈ L2(X, µ), (1.30)

then

(1) Equality (1.28) holds, and the series converges absolutely and uniformly, µ × µ-almost ev-
erywhere on X× X.

(2) The functions φm from (1.29) are uniformly bounded: supm ess supx|φm(x)| < ∞.
(3) The series

∑
m≥1 1/σm converges.

The part about uniform boundedness of eigenfunctions is interesting (and not at all clear).

Generalization 3:8 If

• X =
(
X,B(X), µ

)
is a measure space, where X is a “reasonable” topological space (e.g.

locally compact metric space), and µ is a sigma-finite positive measure on the Borel subsets
of X such that µ(U) > 0 for every open set U ⊂ X;

• K = K(x, y) is a complex-valued continuous function on X satisfying (1.27) and (1.30);
•
∫
XK(x, x)µ(dx) < ∞.

Then equality (1.28) holds, and the series converges absolutely and uniformly on compact sub-sets
of X.

Note that continuity of K and properties of µ imply that (1.30) is equivalent to

N∑
k,m=1

K(xk, xm)akam ≥ 0

for every finite collection of points xk ∈ X and complex numbers ak. With N = 2, this, in turn,
implies |K(x, y)|2 ≤ K(x, x)K(y, y) and hence square integrability of K over X× X:∫∫

X×X |K(x, y)|2 µ(dx)µ(dy) < ∞.

Historical comments. British mathematician James Mercer (1883–1932) was the oldest of nine
children; when he was a student at Cambridge (Trinity College), his personal tutor was J. H. Hardy and
one of his fellow students was J. E. Littlewood; during the First World War, he was Naval Instructor and
participated in the Battle of Jutland, the only major WWI encounter between the British and German
fleets. Mercer’s summability theorem (in the spirit of the Toeplitz lemma) is also due to him, but is less
known.

The German mathematician David Hilbert (1862–1943) requires no introduction.
Erhard Schmidt (1876–1959) was born in Tartu (now Estonia) and was a Ph.D. student of Hilbert; his

Ph.D. dissertation (1905) contains what is now known as the Hilbert-Schmidt theorem and other related
results; his is also the Schmidt in the Gram-Schmidt othogonalization procedure.

The Russian-Soviet mathematician Vladimir Andreevich Steklov (1864–1926) got his Ph.D. from

Kharkov/Kharkiv University; his advisor was A. M. Lyapunov.

7H. König, Eigenvalue Distribution of Compact Operators, Springer-Basel, 1986; Theorem 3.a.1.
8Seems plausible, but reference not available yet


