
Math 507b, Spring 2021

Homework problems

(1) Let an, n ≥ 1, be positive numbers and bn =
∑n

k=1 ak. Show that

∞∑
n=1

an
b2n

<∞.

(2) For random variables ξ, ξn, we say that limn→∞ ξn = ξ completely if∑
n

P(|ξn − ξ| > ε) <∞

for every ε > 0. Clarify the connections among point-wise convergence, complete conver-
gence, and almost sure convergence. In particular,
• Is it possible to converge completely but not with probability one?
• Is it possible to converge completely but not point-wise?
• Is it possible to converge point-wise but not completely?
• Is it possible to converge with probability one but not completely?

In each case, either give a proof or construct a counterexample.
(3) Convince yourself that (a) The function

f(x) =
x

1 + x
, x ≥ 0,

defines the metric on the space of random variables by

ρf (ξ, η) = Ef(|ξ − η|).

(b) convergence in probability is equivalent to convergence in the metric ρf .
(4) Let ξk, k ≥ 1, be Gaussian random variables. Show that the series

∑
k≥1 ξ

2
k converges with

probability one if and only if
∑

k≥1 Eξ2k <∞. Note that ξk are not necessarily independent
or have zero mean, but you are welcome to start by making these additional assumptions
and showing that ∑

k

Eξ2k ≤

(
E exp

(
−
∑
k

ξ2k

))−2
.

(5) Assume that ξn, n ≥ 1, and ξ are random variables such that E|ξn| <∞ for all n, E|ξ| <∞,
and limn→∞ E|ξn−ξ| = 0. Show that limn→∞ ξn = ξ in probability and the family {ξn, n ≥ 1}
is uniformly integrable.

(6) Generate a sample path of the Poisson process. Try the following two ways: (a) Set up
an “exponential clock” and jump every time the clock “rings” (b) Given the time interval,
generate the number of events as a Poisson random variable and then generate the times of
events using the corresponding number of iid uniform random variables. Try to include the
intensity of the Poisson process as a parameter in your procedure. Can you think of any
other ways of generating the process?

(7) (a) Generate a random variable having a symmetric α-stable distribution for a given α ∈
(0, 2). (b) Generate a sample path of a random walk starting at the origin and with incre-
ments having a symmetric α-stable distribution. Try one, two, and three dimensions. How
many times would you expect the random walk to come close to the origin?

(8) Given a stopping time τ and an adapted sequence Xn, n = 0, 1, 2, . . ., confirm that τ and
Xτ are Fτ -measurable.

(9) Let τ and σ be stopping times.
(a) Confirm that τ + σ, τ ∧ σ = min(τ, σ), τσ, and τ ∨ σ = max(τ, σ) are stopping times

and Fτ∧σ = Fτ
⋂
Fσ.

1



2

(b) Confirm that the events {τ = σ} and {σ ≤ τ} are Fτ∧σ-measurable, the event {σ < τ}
is Fτ -measurable, and if σ ≤ τ with probability one, then Fσ ⊆ Fτ .

(c) Is it possible to express Fτ∨σ and Fτ+σ in terms of Fτ and Fσ?
(d) True or false: If P(τ − σ ≥ 0) = 1, then τ − σ is a stopping time?

(10) If Sn, n ≥ 1, is a simple (symmetric) random walk on Zd, then, for d = 1, 2, 3,

lim
n→∞

nd/2P(S2n = 0) = cd, (1)

and also c1 = π−1/2, c2 = 1/π. Is equality (1) true for all d? If so, what is the value of cd?
(11) Let h = h(t), t > 0, be a (Borel) measurable real-valued function. Consider the following

properties of h:
• LI: h is Lebesgue-integrable on (0,+∞);

• IRI: the integral
∫ +∞
0

h(t) dt exists as an improper Riemann integral;
• DRI: h is directly Riemann integrable on (0,+∞).
For each of the following implications, either give a proof that it is true or construct an

example illustrating that it is false:
LI⇒IRI; IRI⇒LI; LI⇒DRI; DRI⇒LI; LI⇒IRI; IRI⇒LI.

(12) Prove that a random variable X is arithmetic if and only if the characteristic function
ϕX(t) = EeitX of X satisfies |ϕX(t0)| = 1 for some t0 6= 0.

(13) Consider a sequence of independent tosses of a fair coin with outcomes H and T.
(a) Compute the probability that HH will appear before HT [It is clearly 1/2].
(b) Compute the expected number of tosses to get HH.
[Here, it is non-trivial, and the answer is 6; if the number we need is x, then x = (EH +

ET )/2, where EC is the expected number of tosses to get HH if the first toss is C. Then
EH = 1 + (1 + ET )/2, and ET = 1 + (ET + EH)/2. ]

(c) Compute the expected number of tosses to get HT [The answer is 4.]
(d) Come up with an alternative (qualitative) explanation why the answer in part (b) is

bigger than the answer in part (c).
(14) Let ξk, k ≥ 1 be iid random variables with P(ξk = 0) = P(ξk = 2) = 1/2. Show that the

sequence Xn = ξ1 · . . . · ξn, n ≥ 1, is a martingale with respect to Fn = σ(ξ1, . . . , ξn) [if you
want, you can put X0 = 1 and F0 = {Ω, ∅}], but there is no integrable random variable ξ
such that Xn = E(ξ|Fn).

(15) Let Sn, n ≥ 0, be a simple symmetric random walk, with S0 = 0. (a) Confirm that
Xn = S2

n − n is a martingale, and then find an increasing predictable sequence An such
that X2

n − An is a martingale. (b) Show that ESτ = 0 for every stopping time τ satisfying
E
√
τ <∞.

(16) (a) Let Sn, n ≥ 0, be a random walk (sum of iid random variables ξk), with S0 = 0, Eξk = 0,
and E|ξk|r <∞ for some r satisfying 1 < r ≤ 2. Show that ESτ = 0 for every stopping time
τ with Eτ 1/r <∞. Give an example illustrating that the result is not true if r > 2. (b) Let
Mn, n ≥ 0, be a square-integrable martingale with M0 = 0. Is it true that EMτ = 0 for
every stopping time τ satisfying E

√
τ <∞?

(17) Let X, and Y be random variables such that, for some sigma-algebra G,

E(X|G) = Y and E(X2|G) = Y 2.

Show that P(X = Y ) = 1.
(18) Let Mn, n ≥ 0, be a martingale and define 4Mk = Mk −Mk−1.

(a) Show that the sequence

En =
eMn∏n

k=1 E(e4Mk |Fk−1)

is a martingale.
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(b) Let {Mn, n ≥ 0} be a square-integrable martingale with M0 = 0 and |4Mk| ≤ c (for
some c > 0 and all k and ω). Show that the sequence

Zn = exp

(
Mn −

〈M〉n
2

)
is a supermartingale. What can happen if we remove the assumption that the jumps 4Mn

are uniformly bounded?
(19) Let {Mn, n ≥ 0} be a martingale and let τ be a stopping time such that

E|Mτ | <∞, P(τ <∞) = 1, lim
n→∞

E
(
|Mn|I(τ > n)

)
= 0.

Show that EMτ = EM0.
(20) Let {Xn, n ≥ 0} be a positive supermartingale and limn→∞ EXn = 0. Show that limn→∞Xn =

0 both in L1 and with probability one.
(21) Let ξk, k ≥ 1, be independent and assume that the limit

lim
n→∞

n∑
k=1

ξk

exists in distribution. Show that the limit also exists with probability one. In other words,
if a series of independent random variables converges in distribution, it also converges with
probability one. [One possible way to proceed is to use the martingale eitSn/EeitSn for a
suitable t.]

(22) Consider the sequence

Xn+1 = θXn + ξn+1

with unknown θ and independent identically distributed ξk having mean zero and finite
variance. Confirm that the least-squares estimator of θ based on the observations X1, . . . , Xn

is strongly consistent as n → ∞, and then try to construct an example of ξk when the
estimator is not consistent. [You can try Gaussian ξk that are not identically distributed,
with variance growing fast enough, for example, Eξ2k = (k!)2].

(23) Here are some other decompositions.
(a) A generalization of the Doob decomposition. Let X = {Xn, n ≥ 0} be any

adapted sequence with E|Xn| < ∞. Show that we can write X = M + A, where M is a
martingale and A is predictable; the representation is unique if we assume A0 = 0. [Try
An =

∑n
k=1 E

(
(Xk −Xk−1)|Fk−1

)
]

(b) Krickeberg decomposition. Let X = {Xn, n ≥ 0} be a submartingale and
supn EX+

n <∞. Show that we can write

Xn = Yn − Zn,
where Y is a martingale and Z is a non-negative supermartingale. [Try Yn = limk→∞ E(Xk|Fn)].
Is this decomposition of X unique in any sense? An alternative form: every martingale Xn

with supn EX+
n <∞ is a difference of two non-negative martingalesM±

n = limk→∞ E(X±k |Fn).
(c) Riesz decomposition. Let X = {Xn, n ≥ 0} be a supermartingale with infn EXn >
−∞. Show that we can write

Xn = Mn + Zn,

where M is a martingale and A is a potential, that is, a non-negative supermartingale
converging to zero, and the representation is unique. [Start with the Doob decomposition
of Xn: Xn = Nn −An, where N is a martingale and A is an increasing predictable process;
then argue that A∞ = limn→∞An exists; then take Mn = Nn−E(A∞|Fn) and complete the
proof.]

(24) (a) Consider a martingale M , a bounded stopping time τ and any other stopping time σ.
Then

E(Mτ |Fσ) = Mτ∧σ.
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This is one of the (many) versions of the basic optional stopping theorem.
(b) Consider a martingale M , a stopping time τ , and an Fτ -measurable random variable

η. Show that the sequence N with Nn = (Mn −Mn∧τ )η is a martingale. [Use part (a) to
show that ENσ = 0 for every bounded stopping time σ; do not forget to check that Nn is
adapted: can replace η with ηI(τ ≤ n)].

(25) Let M be a martingale with E|Mn|p <∞ for all n and some p ∈ (1,+∞). Combine Doob’s
maximal inequality with Hölder and Fubini to show that(

E
(

max
k≤n
|Mk|)p

)1/p
≤ q
(
E|Mn|)q

)1/q
.

Start by writing M∗
n = maxk≤n |Mk| and

E
(
M∗

n)p = (p− 1)

∫ ∞
0

P(M∗
n > x)xp−1 dx.

(26) Consider the probability space (Ω,F ,P) with Ω = [0, 1], F = B([0, 1]) (Borel sigma-algebra),
P((a, b)) = b − a (Lebesque measure); this is sometimes called the Steinhaus probability
space.

(a) Let Fn, n ≥ 1, be the sigma-algebra generated by the intervals

(k2−n, (k + 1)2−n], k = 0, 1, . . . , 2n − 1.

Compute E(f |Fn) for a Lebesgue-integrable, Borel-measurable function f = f(x), x ∈ (0, 1).
The answer is

E(f |Fn)(x) =
2n−1∑
k=0

(
2n
∫ (k+1)2−n

k2−n

f(y)dy

)
I
(
k2−n < x ≤ (k + 1)2−n

)
.

(b) Let f = f(x), x ∈ (0, 1), be a Lebesgue-integrable, Borel-measurable function. Define
f(x) = 0 for x /∈ (0, 1) and let

Mf (x) = sup
t∈(0,1)

1

t

∫ x+t

x

f(y) dy, x ∈ (0, 1).

Show that, for every p > 1,∫ 1

0

|Mf (x)|p dx ≤
(

8p

p− 1

)p ∫ 1

0

|f(x)|p dx.

The result is known as Hardy-Littlewood inequality.
(27) Azuma-Hoeffding Inequality. If X = {Xk, k ≥ 0}, is a martingale with EXk = 0 and

P(|Xk−Xk−1| ≤ ck) = 1 for some non-random numbers ck, then, for every n ≥ 1 and λ > 0,

P
(

max
0≤k≤n

|Xk| > λ
)
≤ 2 exp

(
− λ2

2
∑n

k=1 c
2
k

)
.

(28) Let M = {Mn, n ≥ 0} be a martingale with M0 = 0. Consider the following properties of
M :

UI: The family {Mn, n ≥ 0} is uniformly integrable;
H: E supn |Mn| <∞;
UP: supn E|Mn|p <∞ for some p > 1.
For each of the following implications, either give a proof or construct a counter-example:
UI⇒U; H⇒UI; UI⇒UP; UP⇒UI; H⇒UP; UP⇒H.
[The collection of martingales with property H is (sometimes) called the Hardy space; if

we think of UI and UP as the corresponding space too, then UP⊂H⊂UI, with all inclusions
strict: the Hardy space is the “correct” intermediate space between uniformly integrable
martingales and all Lp martingales, p > 1.]
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(29) Let ξk, k ≥ 1, be iid standard Gaussian random variables. Define Sn =
∑n

k=1 ξk, and

Mn = exp
(
Sn −

n

2

)
.

Confirm that {Mn, n ≥ 1} is a martingale, limn→∞Mn = 0 with probability one, and
limn→∞ EMp

n = 0 if and only if 0 < p < 1.
(30) Confirm that a non-negative local martingale is a super-martingale.
(31) The “basic martingale CLT” is usually stated for triangular arrays with Fnk = σ(ξn,j, j =

1, . . . , kn): if, as n→∞,

kn∑
j=1

P(|ξn,j| > ε
∣∣Fnj−1)→ 0, ε > 0,

kn∑
j=1

E(ξn,jI(|ξn,j| ≤ 1)
∣∣Fnj−1)→ 0,

kn∑
j=1

Var(ξn,jI(|ξn,j| ≤ 1)
∣∣Fnj−1)→ 1,

all in probability, then, also as n→∞,

kn∑
j=1

ξn,j → N (0, 1)

in distribution. State the particular case of this result for 1√
n

∑n
k=1 ξk [taking ξn,k = ξk/

√
n]

and then confirm that the case of iid ξk (zero mean, unit variance) is covered.
(32) Consider a time-homogenous discrete time Markov chain with finitely many states and

transition probabilities p(i, j).
(a) True of False: if

∑
i p(i, j) = 1, then the chain is ergodic, and the stationary distribu-

tion is (discrete) uniform.
(b) True or False: if the chain is ergodic and the stationary distribution is uniform, then∑
i p(i, j) = 1?
In each case, either give a proof [if you think the statement is true] or construct a coun-

terexample.
(33) Consider the simple symmetric random walk on [0, L] with integer L so that

p(i, i± 1) =
1

2
, i = 1, . . . , L− 1, p(0, 0) = p(0, 1) = p(L,L) = p(L,L− 1) =

1

2
.

Confirm that the chain is ergodic and the stationary distribution is uniform on [0, 1, 2, . . . , L].
Find some numbers C > 0 and r ∈ (0, 1) such that

max
i,j
|p(n)(i, j)− 1/(L+ 1)| ≤ Crn.

How do C and r depend on L?
(34) Let N = Nn, n ≥ 1, be a non-trivial branching process and µ = EN1 > 1.

(a) Give an example when limn→∞Nn/µ
n = 0 with probability one;

(b) Given an example when limn→∞Nn/µ
n 6≡ 0 and compute the corresponding limit.

(c) Can limn→∞Nn/µ
n 6≡ 0 be infinite with positive probability?

(35) (a) Give an example of a sequence that is strictly stationary but not mean-square stationary.
(b) Give an example of a sequence that is mean-square stationary but not strictly sta-

tionary.
(36) (a) Show that, for every finite sequence n1 . . . nk, with

n1 ∈ {1, 2, . . . , 9}, n` ∈ {0, 1, 2, . . . , 9}, ` = 2, . . . , k,
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there exists a positive integer N such that the decimal expansion of the number 2N starts
with n1 . . . nk. [Start by showing that the map x 7→ (x + log10 2) mod 1 is ergodic.] What
about 3N?

(b) Show that the distribution of the first digit of the sequence {2n, n ≥ 1} follows
Benford’s law (that is, as n → ∞, the proportion of the numbers in the sequence with
the first digit equal to k approaches log10(1 + k−1), k = 1, . . . , 9). What about the first two
digits? What about 3n?

(c) As a bonus, determine the smallest n such that 2n starts with 7.
(37) Let Xn, n ≥ 1, be a stationary ergodic sequence, with each Xk taking values in a finite set.

Denote by pn = pn(x1, . . . , xn) the joint distribution of (X1, . . . , Xn). Show that the limit

lim
n→∞

1

n
ln pn(X1, . . . , Xn)

exits with probability one and is non-random. [This is one form of the Shannon-McMillan-Breiman
(ergodic) theorem]. Start with the iid case.

(38) (a) Confirm that a Gaussian sequence is strictly stationary if and only if it is mean-square
stationary.

(b) Let {Xn, n ≥ 1} be a stationary Gaussian sequence with EXn = 0 and limn→∞ EX1Xn =
0. Show that the sequence is ergodic.

(39) Let ξk, k ≥ 1, be iid standard normal random variables. Confirm that each of the following
represents the standard Brownian motion W = W (t) on [0, T ]:

W (t) =
∞∑
k=1

ξkMk(t),

where Mk(t) =
∫ t
0
mk(s)ds and {mk, k ≥ 1} is an orthonormal basis in L2((0, T ));

W (t) =
√

2T
∞∑
k=1

ξk
sin
(
(k − (1/2))πt/T

)
π(k − (1/2))

,

which is the Karhunen-Loève representation/expansion of the standard Brownian motion.
Why is usual Fourier series representation of W not as useful?

(40) Let W = W (t), t ∈ [0, T ], be a standard Brownian motion.
(a) Confirm that

lim
n→∞

n∑
k=1

(
W (kT/n)−W ((k − 1)T/n)

)2
= T,

both in L2 and with probability one.
(b) Confirm that the process M(t) = W 2(t) − t is a martingale. Then find a continuous

process A = A(t) so that M2(t)− A(t) is a martingale. How much further can you go?
(41) Let W = W (t) be a standard Wiener process and let τ be a stopping time. Confirm that

1

3
E
√
τ ≤ E

(
sup
t≤τ
|W (t)|

)
≤ 3E

√
τ .

(42) Let N = N(t) be a Poisson process with intensity λ, so that EN(t) = λt. Confirm that
M(t) = N(t)− λt and M2(t)− λt are martingales.

(43) Let T be a positive random variable (P(0 < T < ∞) = 1). Define the process X = X(t)
by X(t) = I(T = t). Identify sufficient (and, if possible, necessary) conditions on the
distribution of T for each of the following to happen:

(a) The process X has a modification that is identically equal to zero.
(b) The conditions of the Kolmogorov continuity criterion hold.
(c) The process X does not have a modification that is identically zero.
(d) The filtration generated by X is (right-, left-, simply) continuous.
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How the answers to (a)–(d) change if T is a stopping time (on a stochastic basis satisfying
the usual conditions).

(44) (a) The Fractional Brownian motion with the Hurst parameter H ∈ (0, 1) is a Gaussian
process BH = BH(t), t ≥ 0, with mean zero and covariance

EBH(t)BH(s) =
t2H + s2H − |t− s|2H

2

Confirm that the trajectories of BH are Hölder continuous of every order less that H, and
that B1/2 is the standard Brownian motion.

(b) The Brownian sheet W = W (t, x), t, x > 0, is a zero-mean Gaussian field with
covariance EW (t, x)W (s, y) = min(t, s) min(x, y). What can you say about the process
X(t) = W (t, t), t ≥ 0?

What to remember.

(1) Modes of convergence;
(2) Uniform integrability;
(3) Zero-one laws: Kolmogorov, Hewitt-Savage, Blumenthal;
(4) Stopping time;
(5) Two identities (equalities/equations) of Wald;
(6) Recurrence vs transience for (a) random walk; (b) Markov chain;
(7) Reflection principle;
(8) Ballot theorem;
(9) Arcsine laws;

(10) Martingale/submartingale/supermartingale vs harmonic/sub-harmonic/superhrmonic func-
tion;

(11) Doob decomposition (Meyer is for continuous time);
(12) Quadratic variation and covariation, both 〈·, ·〉 and [·, ·] versions (it gets even more interesting

in continuous time);
(13) Optional stopping theorem(s);1

(14) Burkholder-Davis-Gundy inequality(ies);
(15) Convergence in L1 and with probability one for (sub)martingales;
(16) LLN(s) and CLT(s) for martingales;
(17) Theorems of Kakutani and Hájek and Feldman (about equivalence/singularity of measures);
(18) Kolmogorov-named equations in connection with Markov processes: Chapman-Kolmogorov,

forward Kolmogorov (Fokker-Plank), backward Kolmogorov;
(19) Strong Markov property;
(20) Ergodic Theorems (the more, the better);
(21) Benford’s Law;
(22) Stochastic basis with the usual conditions/assumptions;
(23) Brownian motion;
(24) Poisson process;
(25) Continuity criterion of Kolmogorov;
(26) Different ways two continuous-time stochastic processes can be “the same”;
(27) Wiener process vs Brownian motion; Lèvy’s characterization of the Wiener process;
(28) Lèvy processes;
(29) Skorokhod representation (embedding) for Brownian motion;
(30) Dambis-Dubinis-Schwarz theorem (a general martingale as a time-changed Brownian mo-

tion);
(31) Weak convergence of random processes (as processes) and the Donsker invariance principle;

1Not to be confused with optimal stopping.



8

(32) Some other “concrete” examples: simple symmetric random walk, branching (Bienaymé-
Galton-Watson) process, Polya urn model, M/G/1, M/M/∞ and other queues, Ehrenfest
chain, Bernoulli shift.

Reflective questions for discussions.2

(1) Take one homework problem you have worked on this semester that you struggled to under-
stand and solve, and explain how (or if...) the struggle itself was valuable.

(2) What mathematical ideas are you curious to know more about as a result of taking this
class? Give one example of a question about the material that you would like to explore
further, and explain why you consider this question interesting.

(3) What three theorems did you most enjoy from the course, and why?
(4) Formulate a research question related to the course material that you would like to answer.
(5) Reflect on your overall experience in this class by describing an interesting idea that you

learned, why it was interesting, and what it tells you about doing or creating mathematics.
(6) Think of one particular proof [of a result related to the topic of this class] and share your

ideas about the ways you think the proof should be improved. [The two super-challenges
are the section theorem(s) about stopping times and existence of a progressively measurable
modification].

2Most are not mine, including the wording. Suggestions for improvement will be part of the discussion.


