MATH 445 Mid-Term Exam 2

Instructions:

- No notes, no books or other printed materials (including printouts from the web), and no calculators.
- Answer all questions, show your work, circle your answers.

From 2013
Problem 1. (a) (5 pts) The Fourier transform of the function $f(x)=e^{-x^{2} / 2}$ is $\widehat{f}(\omega)=e^{-\omega^{2} / 2}$. Compute the Fourier transform of the function $g(x)=e^{-x^{2}}$.
(b) (10 pts) The Fourier transform of the function $f(t)=e^{-|t|}$ is $\widehat{f}(\omega)=\sqrt{\frac{2}{\pi}} \frac{1}{1+\omega^{2}}$. Use the result to evaluate the integrals $\int_{0}^{\infty} \frac{\cos (\omega x)}{1+\omega^{2}} d \omega$ and $\int_{0}^{\infty} \frac{1}{\left(1+\omega^{2}\right)^{2}} d \omega$.

Problem 2. Use separation of variables to find a non-constant solution $u=u(x, t)$ of the equation $u_{t}+u u_{x}=0$.

Problem 3. Solve the following initial value problem:

$$
\begin{aligned}
& u_{t}-u_{x}=0, u=u(x, t), x \in \mathbb{R}, t>0 \\
& u(x, 0)=\sin x
\end{aligned}
$$

and determine the set of points (x, t) where $u(x, t)=0$.
Problem 4. Solve the following initial-boundary value problem:

$$
\begin{array}{ll}
u_{t} & =u_{x x}, u=u(x, t), x \in(0,1), t>0, \\
u(x, 0) & =\sum_{n \geq 0} \frac{\sin (2 \pi(2 n+1) x)}{(2 n+1)^{2}}, \\
u(0, t) & =0 \\
u(1, t) & =0 .
\end{array}
$$

From 2020
Note: Table summarizing properties of the Fourier transform was included.
Problem 1. Let $f(x)=x^{3},|x|<2$. Denote by $S_{f}(x)$ the sum of the Fourier series of f. Draw the graph of S_{f} for $x \in[-6,6]$ and evaluate (a) S_{f} (4) (b) $S_{f}(5 / 2)$.

Problem 2. The Fourier transform of the function $f(x)=e^{-x^{2} / 2}$ is $\widehat{f}(\omega)=e^{-\omega^{2} / 2}$. Compute the Fourier transform of the function $g(x)=x e^{-x^{2} / 2}$.

Problem 3. Use separation of variables to find a non-constant solution $u=u(t, x)$ of the equation $u_{t}=\left(u_{x}\right)^{2}$.

Problem 4. Solve the following initial value problem:

$$
\begin{aligned}
& u_{t}+2 u_{x}=0, u=u(t, x), t>0, x \in \mathbb{R}, \\
& u(0, x)=\cos x
\end{aligned}
$$

and determine the set of points (t, x) where $u(t, x)=0$.
Problem 5. Solve the following initial-boundary value problem:

$$
\begin{aligned}
& u_{t}=2 u_{x x}, u=u(t, x), t>0, x \in(0, \pi), \\
& u(0, x)=\sin (2 x)-3 \sin (5 x) \\
& u(t, 0)=0 \\
& u(t, \pi)=0
\end{aligned}
$$

