MATH 445 Final Exam

Instructions:

e No notes, no books or printouts from the web, and no calculators.

e Answer all questions, show your work, circle your answers.
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Problem 1. (10 pts)
(a) (5 pts) Compute the line integral / Vf-dr, where f(z,y,z) = 2> +y32° V[ is the gradient
c
of f, and C is a straight line segment from the point (0,0, 0) to the point (1,3,2).

(b) (5 pts) Let C be the curve 22 + y? = 1,2z + y + z = 10, oriented counterclockwise as seen
from the point (0,0, 20). Compute the line integral

%F-dr,
c

where F = (2? + 2xy, vy, 3yz + z). (Do not even think of evaluating the integral directly).

Problem 2. (10 points) Compute the power series expansion of the solution of
w”(z) — 2zw'(2) + 4w(z) = 0,w(0) = 1,w'(0) = 0.

Problem 3. 9 + 1
(a) (5 pts) Find the Laurent series expansion of the function f(z) = : 3 around the point

20:3.

(b) (5 pts) Compute the Taylor series expansion of the function

2241
z+1

f(z) =

near the point zy = 1 and determine the radius of convergence of the series.

Problem 4. (a) (5 pts) The function f = f(z) is defined by f(z) = |z| for |z| <1 and f(z) =0
for |z| > 1. Denote by I;(z) the Fourier integral of f. Sketch the graph of Iy and compute ¢(1).

(b) (5 pts) Let f(x) = 2z, |z| < 1. Denote by Sy(x) the sum of the Fourier series of the periodic
extension of f with period 2. Sketch the graph of S; and compute S¢(3).

1 ~
(c) (5 pts) The Fourier transform of the function f(z) = T2 is f(w) = \/ge_lwl. Use the
x

result to compute the Fourier transform of the function f(z) = a0
x



1
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(d) (5 pts) The Fourier transform of f(z) =
) o dx
the mtegral \/_oo (1—}——:[;2)2
Problem 5. (15 points) Let f be a 27 periodic function so that f(z) = 1,0 <z < m; f(z) =
0,7 < x < 2m. The Fourier series of f is

is J?(w) = \/geM. Use the result to evaluate

1 sin((2k + 1)x)
Si(z) == .
T ; 2%k + 1
(a) Use th It to evaluate th Z (1"
r m
Se € resu O evaluate € su Qk—i—l
1

(b) Use the result to evaluate the sum Z YRRV
= (2k+1)

(c) Use the result to compute the Fourier series of the function g(z) =1,0 <z < 1/4;
g(x) =—1,1/4 < x < 1/2, g is periodic with period 1.

Problem 6. (10 points) Use separation of variables to find a non-constant solution u = u(t, x)
of the partial differential equation u; + 2uu, = 0.

Problem 7. (15 points) Solve the following initial-boundary value problem:

Uy = Uge, u=u(z,t), x€(0,1), t>0,
sin(27w(2n + 1)z)
u(x,0) = )
(z,0) ; (2n +1)2
u(0,t) = 0,
u(l,t) = 0.

Problem 8. (10 points) Solve the following initial value problem

Uy — Uz = 0, u=u(z,t), x €R, t>0,
u(z,0) = sinuz,
u(z,0) = 0.

and determine the set of points (z,t) such that u(z,t) = 0.
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Note: Table summarizing properties of the Fourier transform was included.

Problem 1. Compute the flux of the vector field F = (3z — 4z2) % + (2° + 2y) j + (42 + zy) &
out of the sphere 2% 4 3% + 22 = 1.

Problem 2. Compute a polynomial solution of the equation

2w"(z) + (1 — 2)w'(z) + 2w(z) = 0.



(2 —4x +2%)/2: Laguerre

2 1
Problem 3. Compute the residue of the function f(z) = (Z+—+3)2 at the point zg = —3.
z
Problem 4. Compute the Taylor series expansion of the function
2241
Sy = =5

near the point zy = 1 and determine the radius of convergence of the series.

Problem 5. The function f = f(x) is defined by f(z) = coszx for |z| < 7 and f(x) = 0 for
|z| > m. Denote by If(x) the Fourier integral of f. Sketch the graph of I; for x € [—2m, 27| and
compute [f(7).

Problem 6. Let f(z) = 2z, |z| < 2. Denote by Sy(z) the sum of the Fourier series of the
periodic extension of f with period 4. Sketch the graph of Sy for x € [—6,6] and compute S (3).

Problem 7. The Fourier transform of the function f(z) = e=**/2 is f(w) = ¢“*/2. Compute
the Fourier transform of the function

g(z) = (22% — e /2,
The answer is —g(w)
Problem 8. Use separation of variables to find a non-constant solution u = u(¢, ) of the equa-

tion wuy = (uy)?

T

remarkably, both e** and e'™* work

Problem 9. Solve the initial value problem

Ugt = QUgy, u=u(z,t), x €R, t>0,
u(z,0) = sinz,
w(z,0) = 0.

Problem 10. Solve the initial-boundary value problem

Uy = %um, u=u(t,x), t >0, z€(0,1),
w(0,2) = sin(7rx) — 3sin(4dnrz),

u(t,0) = 0,

u(t,1) = 0.
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