MATH 445 Final Exam

Instructions:

- No notes, no books or printouts from the web, and no calculators.
- Answer all questions, show your work, circle your answers.

From 2013
Problem 1. (10 pts)
(a) (5 pts) Compute the line integral $\int_{C} \nabla f \cdot d \mathbf{r}$, where $f(x, y, z)=x^{2}+y^{3} z^{5}, \nabla f$ is the gradient of f, and C is a straight line segment from the point $(0,0,0)$ to the point $(1,3,2)$.
(b) (5 pts) Let C be the curve $x^{2}+y^{2}=1,2 x+y+z=10$, oriented counterclockwise as seen from the point $(0,0,20)$. Compute the line integral

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r},
$$

where $\mathbf{F}=\left\langle x^{2}+2 x y, x y, 3 y z+x\right\rangle$. (Do not even think of evaluating the integral directly).
Problem 2. (10 points) Compute the power series expansion of the solution of

$$
w^{\prime \prime}(z)-2 z w^{\prime}(z)+4 w(z)=0, w(0)=1, w^{\prime}(0)=0
$$

Problem 3.

(a) (5 pts) Find the Laurent series expansion of the function $f(z)=\frac{2 z+1}{z-3}$ around the point $z_{0}=3$.
(b) (5 pts) Compute the Taylor series expansion of the function

$$
f(z)=\frac{z^{2}+1}{z+1}
$$

near the point $z_{0}=1$ and determine the radius of convergence of the series.
Problem 4. (a) (5 pts) The function $f=f(x)$ is defined by $f(x)=|x|$ for $|x|<1$ and $f(x)=0$ for $|x| \geq 1$. Denote by $I_{f}(x)$ the Fourier integral of f. Sketch the graph of I_{f} and compute $I_{f}(1)$.
(b) (5 pts) Let $f(x)=2 x,|x|<1$. Denote by $S_{f}(x)$ the sum of the Fourier series of the periodic extension of f with period 2. Sketch the graph of S_{f} and compute $S_{f}(3)$.
(c) (5 pts) The Fourier transform of the function $f(x)=\frac{1}{1+x^{2}}$ is $\widehat{f}(\omega)=\sqrt{\frac{\pi}{2}} e^{-|\omega|}$. Use the result to compute the Fourier transform of the function $f(x)=\frac{2}{5+3 x^{2}}$
(d) (5 pts) The Fourier transform of $f(x)=\frac{1}{1+x^{2}}$ is $\widehat{f}(\omega)=\sqrt{\frac{\pi}{2}} e^{-|\omega|}$. Use the result to evaluate the integral $\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}$.

Problem 5. (15 points) Let f be a 2π periodic function so that $f(x)=1,0 \leq x<\pi ; f(x)=$ $0, \pi \leq x<2 \pi$. The Fourier series of f is

$$
S_{f}(x)=\frac{1}{2}+\frac{2}{\pi} \sum_{k \geq 0} \frac{\sin ((2 k+1) x)}{2 k+1}
$$

(a) Use the result to evaluate the sum $\sum_{k \geq 0} \frac{(-1)^{k}}{2 k+1}$.
(b) Use the result to evaluate the sum $\sum_{k \geq 0} \frac{1}{(2 k+1)^{2}}$.
(c) Use the result to compute the Fourier series of the function $g(x)=1,0 \leq x \leq 1 / 4$; $g(x)=-1,1 / 4<x<1 / 2, g$ is periodic with period 1.

Problem 6. (10 points) Use separation of variables to find a non-constant solution $u=u(t, x)$ of the partial differential equation $u_{t}+2 u u_{x}=0$.

Problem 7. (15 points) Solve the following initial-boundary value problem:

$$
\begin{array}{ll}
u_{t} & =u_{x x}, u=u(x, t), x \in(0,1), t>0 \\
u(x, 0) & =\sum_{n \geq 0} \frac{\sin (2 \pi(2 n+1) x)}{(2 n+1)^{2}} \\
u(0, t) & =0 \\
u(1, t) & =0
\end{array}
$$

Problem 8. (10 points) Solve the following initial value problem

$$
\begin{array}{ll}
u_{t t}-u_{x x} & =0, u=u(x, t), x \in \mathbb{R}, t>0 \\
u(x, 0) & =\sin x \\
u_{t}(x, 0) & =0
\end{array}
$$

and determine the set of points (x, t) such that $u(x, t)=0$.

From 2020

Note: Table summarizing properties of the Fourier transform was included.
Problem 1. Compute the flux of the vector field $\mathbf{F}=(3 x-4 x z) \hat{\boldsymbol{\imath}}+\left(z^{3}+2 y\right) \hat{\boldsymbol{\jmath}}+(4 z+x y) \hat{\boldsymbol{\kappa}}$ out of the sphere $x^{2}+y^{2}+z^{2}=1$.

Problem 2. Compute a polynomial solution of the equation

$$
z w^{\prime \prime}(z)+(1-z) w^{\prime}(z)+2 w(z)=0
$$

$\left(2-4 x+x^{2}\right) / 2: \quad$ Laguerre
Problem 3. Compute the residue of the function $f(z)=\frac{2 z+1}{(z+3)^{2}}$ at the point $z_{0}=-3$.
Problem 4. Compute the Taylor series expansion of the function

$$
f(z)=\frac{z^{2}+1}{z+1}
$$

near the point $z_{0}=1$ and determine the radius of convergence of the series.
Problem 5. The function $f=f(x)$ is defined by $f(x)=\cos x$ for $|x|<\pi$ and $f(x)=0$ for $|x| \geq \pi$. Denote by $I_{f}(x)$ the Fourier integral of f. Sketch the graph of I_{f} for $x \in[-2 \pi, 2 \pi]$ and compute $I_{f}(\pi)$.

Problem 6. Let $f(x)=2 x,|x|<2$. Denote by $S_{f}(x)$ the sum of the Fourier series of the periodic extension of f with period 4. Sketch the graph of S_{f} for $x \in[-6,6]$ and compute $S_{f}(3)$.

Problem 7. The Fourier transform of the function $f(x)=e^{-x^{2} / 2}$ is $\widehat{f}(\omega)=e^{-\omega^{2} / 2}$. Compute the Fourier transform of the function

$$
g(x)=\left(2 x^{2}-1\right) e^{-x^{2} / 2}
$$

The answer is $-g(\omega)$
Problem 8. Use separation of variables to find a non-constant solution $u=u(t, x)$ of the equation $u u_{t}=\left(u_{x}\right)^{2}$.
remarkably, both e^{t+x} and e^{t-x} work
Problem 9. Solve the initial value problem

$$
\begin{aligned}
& u_{t t}=9 u_{x x}, u=u(x, t), x \in \mathbb{R}, t>0 \\
& u(x, 0)=\sin x \\
& u_{t}(x, 0)=0
\end{aligned}
$$

Problem 10. Solve the initial-boundary value problem

$$
\begin{array}{ll}
u_{t} & =\frac{1}{2} u_{x x}, u=u(t, x), t>0, x \in(0,1) \\
u(0, x) & =\sin (\pi x)-3 \sin (4 \pi x) \\
u(t, 0) & =0 \\
u(t, 1) & =0
\end{array}
$$

