MATH 445: Preparation for Mid-Term Exam 2 Monday, November 14, 2022

Instructor — S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu) The tables on page 3 will be available during the exam; $i = \sqrt{-1}$.

Problem 1: Computing Fourier transform.

Example. The Fourier transform of $f(x) = e^{-|x|}$ is $\hat{f}(\omega) = \sqrt{2/\pi}(1+\omega^2)^{-1}$. Use the result to compute the Fourier transform of $q(x) = xe^{-|x|/2}$.

Reasoning. If $h(x) = e^{-|x|/2}$, then g(x) = xh(x) and h(x) = f(x/2), so that $\hat{h}(\omega) = 2\hat{f}(2\omega)$ and then $\hat{g}(\omega) = i\hat{h}'(\omega)$.

Computations. $\hat{h}(\omega) = 2^{3/2} \pi^{-1/2} (1 + 4\omega^2)^{-1}, \ \hat{g}(\omega) = -8i\omega 2^{3/2} \pi^{-1/2} (1 + 4\omega^2)^{-2}.$

Now, do the following. The Fourier transform of the function $f(x) = e^{-x^2/2}$ is $\hat{f}(\omega) = e^{-\omega^2/2}$. Compute the Fourier transform of the function $g(x) = xe^{-x^2}$. [the answer is $-i\omega 2^{-3/2}e^{-\omega^2/4}$]

Problem 2: Plancherel's identity.

Example. The Fourier transform of $f(x) = e^{-|x|}$ is $\hat{f}(\omega) = \sqrt{2/\pi}(1+\omega^2)^{-1}$. Us the result to compute $I = \int_0^{+\infty} (1+\omega^2)^{-2} d\omega$.

Reasoning. By Plancherel, $\int_{-\infty}^{+\infty} |f(x)|^2 dx = \int_{-\infty}^{+\infty} |\hat{f}(\omega)|^2 d\omega$. Computation. $2I = (\pi/2) \int_{-\infty}^{+\infty} |\hat{f}(\omega)|^2 d\omega = (\pi/2) \int_{-\infty}^{+\infty} e^{-2|x|} dx = \pi \int_0^{+\infty} e^{-2x} dx = \pi/2$ so $I = \pi/4$. Now do the following. The Fourier transform of the function

$$f(t) = \begin{cases} 1, & \text{if } |t| \le 1, \\ 0, & \text{if } |t| > 1 \end{cases}$$

is $\widehat{f}(\omega) = \sqrt{\frac{2}{\pi}} \frac{\sin \omega}{\omega}$. Use the result to evaluate the integral $I = \int_0^\infty \left(\frac{\sin \omega}{\omega}\right)^2 d\omega$. [the answer is $\pi/2$.]

Problem 3: Basic separation of variables.

Example. Use separation of variables to find a non-constant solution u = u(t, x) of the equation $u_t = u^6 u_x$ such that the function u = u(t, x) is defined for all x > -1 and t < 1.

Reasoning. Write u(t, x) = f(t)g(x) and plug into the equation: $f'g = f^6g^6fg'$ or $(f'/f^7)(t) = (g^5g')(x)$. For equality to hold for all t and x, both expressions must be the same number a; make it a = 1. This leads to two ODEs.

Computations. $f'/f^7 = 1$ means $-f^{-6}(t) = (t+c_1)/6$, and, because even powers are non-negative, we must have $t + c_1 \leq 0$. Thus, for f to be defined for t < 1, we need $c_1 \leq -1$, so take $c_1 = -1$ and then $f(t) = ((1-t)/6)^{-1/6}$. Similarly, $g^5g' = 1$ means $g^6(x) = (x+c_2)/6 \geq 0$; for g to be defined for x > -1 we need $c_2 \geq 1$, so take $c_2 = 1$ and then $g(x) = ((x+1)/6)^{1/6}$. Because u = fg, we get the final answer $u(t,x) = \left(\frac{x+1}{1-t}\right)^{1/6}$.

Now solve the same problem for $u_t = u^4 u_x$. [a possible answer is $\left(\frac{x+1}{1-t}\right)^{1/4}$] Problem 4: Transport equation.

Example. Solve the following initial value problem:

$$u_t - 5u_x = 0, \ u = u(t, x), \ t > 0, \ x \in \mathbb{R}, u(0, x) = e^x.$$

Reasoning. Here, we just know that the solution of $u_t + cu_x = 0$ is u(0, x - ct). Solution. With c = -5 and $u(0, x) = e^x$, the answer is $u(t, x) = e^{x+5t}$. *Now* solve the following initial value problem:

$$u_t + 5u_x = 0, \ u = u(t, x), \ t > 0, \ x \in \mathbb{R},$$

 $u(0, x) = \cos x.$

[the answer is $\cos(x-5t)$.]

Problem 5: Wave equation on an interval

Example. Solve the following initial-boundary value problem:

$$\begin{array}{rcl} u_{tt} & = & 9u_{xx}, \ u = u(t,x), \ t > 0, \ x \in (0,\pi), \\ u(0,x) & = & \sin(3x) - 3\sin(4x), \\ u_t(0,x) & = & 0, \\ u(t,0) & = & 0, \\ u(t,\pi) & = & 0. \end{array}$$

Reasoning. From the boundary conditions, we expect the solution to be $\sum_{k\geq 1} f_k(t) \sin(kx)$ and, by linearity, each $f_k(t) \sin(kx)$ should satisfy the equation, that is, $f''_k(t) = -9k^2 f_k(t)$. The solution of this equation is $f_k(t) = f_k(0) \cos(3kt) + (f'_k(0)/(3k)) \sin(3kt)$. From initial conditions, $f_3(0) = 1$, $f_4(0) = -3$, and $f_k(0) = 0$ for all other k; $f'_k(0) = 0$ for all k.

Computation. We write down the final answer: $u(t, x) = \cos(9t) \sin(3x) - 3\cos(12t) \sin(4x)$. Now solve the following initial-boundary value problem:

$$\begin{array}{rcl} u_{tt} & = & 9u_{xx}, \; u = u(t,x), \; t > 0, \; x \in (0,\pi), \\ u(0,x) & = & 0, \\ u_t(0,x) & = & \sin(3x) - 3\sin(4x), \\ u(t,0) & = & 0, \\ u(t,\pi) & = & 0. \end{array}$$

[the answer is $(1/9)\sin(9t)\sin(3x) - (1/4)\sin(12t)\sin(4x)$].

Properties	of	\mathbf{the}	Fourier	series	and	transform

Series	Name	Transform
$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$	Forward	$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\omega} dx$
$S_f(x) = \sum_{k=-\infty}^{+\infty} c_k(f) e^{\mathbf{i}kx}$	Inverse	$I_f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\omega) e^{ix\omega} d\omega$
$c_0(f) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) dx$	Obvious	$\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) dx$
$\sum_{k=-\infty}^{+\infty} c_k(f) = S_f(0) = \frac{\tilde{f}(0+) + \tilde{f}(0-)}{2}$	Obvious	$I_f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\omega) e^{ix\omega} d\omega$ $\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) dx$ $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\omega) d\omega = I_f(0)$ $= \frac{f(0+)+f(0-)}{2}$
$\lim_{ k \to \infty} c_k(f) = 0$		$\lim_{ \omega \to\infty} \hat{f}(\omega) = 0, \ \hat{f} \text{ continuous}$
$\sum_{k=-\infty}^{+\infty} c_k(f) ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) ^2 dx$		$\int_{-\infty}^{+\infty} \hat{f}(\omega) ^2 d\omega = \int_{-\infty}^{+\infty} f(x) ^2 dx$

Further properties of the Fourier transfor					

Function	Fourier transform	Function	Fourier transform
f(x)	$\hat{f}(\omega) = \mathcal{F}[f](\omega)$	$\hat{f}(x)$	$f(-\omega)$
f(x-a)	$e^{-\mathrm{i}a\omega}\hat{f}(\omega)$	$e^{\mathbf{i}ax}f(x)$	$\hat{f}(\omega-a)$
$f(x/\sigma)$	$\sigma \hat{f}(\sigma \omega)$	$e^{-x^2/2}$	$e^{-\omega^2/2}$
f'(x)	${ m i}\omega \hat{f}(\omega)$	xf(x)	$\mathfrak{i}\hat{f}'(\omega)$
f''(x)	$-\omega^2 \hat{f}(\omega)$	$x^2f(x)$	$-\hat{f}''(x)$
$\int f(x)dx$	$rac{\hat{f}(\omega)}{\mathfrak{i}\omega}$	$\frac{f(x)}{x}$	$\frac{1}{\mathfrak{i}}\int \widehat{f}(\omega)d\omega$
(f * g)(x)	$\sqrt{2\pi}\hat{f}(\omega)\hat{g}(\omega)$	$\int f(x)g(x)$	$\frac{1}{\sqrt{2\pi}}(\hat{f} * \hat{g})(\omega)$
$e^{- x }$	$\sqrt{\frac{2}{\pi}} \frac{1}{1+\omega^2}$	$\frac{1}{1+x^2}$	$\sqrt{\frac{\pi}{2}} e^{- \omega }$
$1(x \le 1)$	$\sqrt{\frac{2}{\pi}} \frac{\sin \omega}{\omega}$	$\frac{\sin\omega}{\omega}$	$\sqrt{\frac{\pi}{2}}1(x \leq 1)$
$\delta_a(x)$	$e^{-i\omega a}/\sqrt{2\pi}$	$\cos(ax)$	$\sqrt{\pi/2} \Big(\delta_a(\omega) + \delta_{-a} \Big)$