Wednesday, April 24, 2013; 9-9:50am
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Name: \qquad

Circle the time of your discussion section: $2 \mathrm{pm} \quad 3 \mathrm{pm} \quad 4 \mathrm{pm}$

Instructions:

- No notes, books, calculators, etc.
- Answer all questions and clearly indicate your answers.
- Show your work! Points might be taken off for correct answer with no explanations. Wrong answer with no explanations is worth zero points.

Problem	Possible	Actual
1	10	
2	10	
3	10	
4	20	
Total	50	

Problem 1. Determine all values of the parameter c for which the critical point of the system

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
c & 1 \\
2 & c
\end{array}\right)\binom{x}{y}
$$

is a saddle.

Problem 2. Determine all values of the parameter c for which all solutions of the system

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}
-2 & c \\
1 & -2
\end{array}\right)\binom{x}{y}
$$

are asymptotically stable.

Problem 3. Sketch the phase portrait for the equation $y^{\prime \prime}+2 y^{\prime}+y=0$.

Problem 4. For the system,

$$
\left\{\begin{array}{l}
x^{\prime}=-y+x y \\
y^{\prime}=3 x-x^{2}-x y
\end{array}\right.
$$

determine the location and type of all critical points.

