
A Summary of (Abstract) Ergodic Theory for (Abstract) Markov Processes.

Main objects.

State Space E : A Polish metric space (complete separable metric space) with metric ρ = ρ(x, y);

Metric ball in E : B(y, r) = {x ∈ E : ρ(x, y) < r}, center y, radius r;

Transition Probability Function (Transition Semigroup) : P = Pt(x,A), t ≥ 0, x ∈ E, A ∈ B(E);
(Real− valued) Bounded measurable functions on E : Bb(E);

(Real− valued) Bounded continuous functions on E : Cb(E);
Probability measures on

(
E,B(E)

)
: M1(E).

Basic Assumptions on P .

(1) For every t ≥ 0 and x ∈ E, the mapping A 7→ Pt(x,A) is a probability measure on B(E);
(2) For every t ≥ 0 and A ∈ B(E), the mapping x 7→ Pt(x,A) is measurable [from

(
E,B(E)

)
to(

R,B(R)
)
].

(3) Semigroup Property or Chapman-Kolmogorov equation:

Pt+s(x,A) =

∫
E

Pt(x, dy)Ps(y, A) =

∫
E

Ps(x, dy)Pt(y, A), t, s > 0, A ∈ B(E). (1)

(4) Starting from identity:

P0(x,A) = 1(x ∈ A). (2)

In terms of a Markov process: if X =
(
X(t), t ≥ 0

)
is defined on

(
Ω,F , (F)t≥0,P

)
so that

X(t) ∈ E is Ft-measurable, the Markov property

E
(
φ(X(t))|Fs

)
= E

(
φ(X(t))|X(s)

)
, t > s ≥ 0, φ ∈ Bb(E),

holds, and the process is (time-)homogeneous:

E
(
φ(X(t))|X(s)

)
= E

(
φ(X(t− s))|X(0)

)
, t > s ≥ 0, φ ∈ Bb(E),

then

P
(
X(t) ∈ A|X(s) = x

)
= Pt−s(x,A), t > s ≥ 0, x ∈ E, A ∈ B(E).

Note that these constructions work the same for both discrete and continuous time parameter.

Basic Notations:

• Total variation distance:

‖µ− ν‖TV = sup
A∈B(E)

|µ(A)− ν(A)|, µ, ν ∈ M1(E);

• Action on functions:

Pt[φ](x) =

∫
E

φ(y)Pt(x, dy), x ∈ E, φ ∈ Bb(E);

• Action on measures:

P ∗
t [ν](A) =

∫
E

Pt(x,A)ν(dx), A ∈ B(E), ν ∈ M1(E);
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In terms of the Markov process X: Pt[φ](x) = E
(
φ
(
X(t)

)
|X(0) = x

)
; P ∗

t [ν](A) = P
(
X(t) ∈ A

)
if the distribution of X(0) is ν, that is, P

(
X(0) ∈ C

)
= ν(C).

To note: by (2), P0[φ] = φ, P ∗
0 [ν] = ν; also, Pt[1] = 1.

Advanced definitions.

(1) µ ∈ M1(E) is called invariant measure for P if P ∗
t [µ](A) = µ(A) for all A ∈ B(E) and

t ≥ 0. Equivalently,∫
E

Pt[φ](x)µ(dx) =

∫
E

φ(x)µ(dx), φ ∈ Bb(E). (3)

(2) P is called Feller if

lim
t→0+

Pt

(
x,B(x, r)

)
= 1, r > 0, x ∈ E; (4)

φ ∈ Cb(E) ⇒ Pt[φ] ∈ Cb(E), t > 0. (5)

(3) P is called strong Feller at t0 > 0 if it is Feller and

φ ∈ Bb(E) ⇒ Pt0 [φ] ∈ Cb(E). (6)

(4) P is called regular at t1 > 0 if the measures Pt1(x, ·) are equivalent for all x ∈ E;
(5) P is called irreducible at t2 > 0 if Pt2(x,A) > 0 for all x ∈ E and all open sets A ⊆ E.

To Note:

• Condition (4) is equivalent to limt→0+ Pt[φ] = φ for every bounded Lipschitz continuous
φ : E → R.

• If µ ∈ M1(E) and Pt is symmetric on L2(E;µ), that is∫
E

Pt[φ](x)ψ(x)µ(dx) =

∫
E

Pt[ψ](x)φ(x)µ(dx), t ≥ 0, φ, ψ ∈ L2(E;µ),

then µ is invariant for P [take ψ identically equal to 1 and get (3)].

The Ergodic Theorem. If P has a unique invariant measure µ and f : E → R is a function such
that

∫
E
|f(x)|µ(dx) <∞, then, for the corresponding Markov process X, the following convergence

takes place, both with probability one and in L1:

lim
T→∞

1

T

∫ T

0

f
(
X(t)

)
dt =

∫
E

f(x)µ(dx) (continuous time)

lim
n→∞

1

n

n∑
k=1

f
(
X(k)

)
=

∫
E

f(x)µ(dx) (discrete time).

Moreover, under some additional conditions, the Central Limit Theorem holds for a suitably nor-
malized difference.
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The main results.

(1) Krylov-Bogolyubov: If P is Feller and there exist ν,µ ∈ M1(E) such that, for some
sequence tn ↗ +∞,

lim
n→∞

1

tn

∫ tn

0

P ∗
t [ν] dt = µ weakly,

then µ is invariant for P .
(2) Doob: If P has an invariant measure µ and there exists a t0 > 0 such that P is regular at

t0, then
• µ is the unique invariant measure for P ;
• µ is equivalent to Pt(x, ·) for all x ∈ E and t ≥ t0;
• as t→ ∞, Pt(x, ·) converges to µ in total variation for every x ∈ E.

(3) Khasminskii: If P is strong Feller at t0 > 0 and irreducible at t1 > 0, then P is regular at
t0 + t1.

(4) Doeblin: If there exist ν0 ∈ M1(E), ε > 0 and t0 > 0 so that, for all A ∈ B(E),
P ∗
t0
[ν](A) ≥ εν0(A), ν ∈ M1(E),

then there is a unique invariant measure µ for P and

‖P ∗
t [ν]− µ‖TV ≤ 1

1− ε
e−λt ‖ν − µ‖TV, λ = − ln(1− ε)

t0
.

(5) Bonus: A Feller Markov process is strong Markov (that is, can be re-started at a stopping
time), and a Feller semigroup is a transition semigroup of a strong Markov family [The-
orems 31.11. and 31.12 in Fristedt and Gray, A Modern Approach to Probability Theory,
Birkhäuser/Springer, 1997]

Now assume that time is discrete: t = 0, 1, 2, . . .; P1(x,A) = P (x,A) is the one-step transi-
tion probability function: P (x,A) = P

(
X(1) ∈ A|X(0) = x

)
; Pn(x,A) is the n-step transition

probability Pn(x,A) = P
(
X(n) ∈ A|X(0) = x

)
. Even though there is a certain abuse of no-

tations, with P denoting the whole transition semigroup and the one-step transition function,
note that, by Chapman-Kolmogorov, one-step transition probabilities determine everything else:
P2(x,A) =

∫
E
P (x, dy)P (y, A), etc.

Doeblin condition(s).

[MGD] More general: there are ν0 ∈ M1(E), n0 ≥ 1, ε ∈ (0, 1) so that, for all A ∈ B(E) with
ν0(A) ≤ ε and all x ∈ E, we have Pn0(x,A) ≤ 1− ε.

[LGD] Less general: there are ν0 ∈ M1(E), n0 ≥ 1, and δ ∈ (0, 1) such that, for all x ∈ E, we
have Pn0(x,A) ≥ δν0(A).

Note that

(1) condition [MGD] always holds when E is finite, with N elements: take ν to be uniform on
E and ε < 1/N so that ν(A) ≤ ε means A is an empty set;

(2) condition [LGD] implies [MGD] with the same ν0 and n0 and with ε = 1/2;
(3) condition [LGD] holds for finite state irreducible aperiodic Markov sequences, with ν equal

to the invariant distribution and n0 is whatever ensures p
(n0)
ij > 0 for all i, j ∈ E;

(4) condition [LGD] ensures geometric ergodicity: existence and uniqueness of the invariant
measure µ such that

‖Pn(x, ·)− µ‖TV ≤
(
1− δ

)(n/n0)−1
, x ∈ E.
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The Harris Chain. Here is one possible definition: The Markov sequence X =
(
X(n), n ≥ 0

)
with X(n) ∈ E, is called a Harris chain if

∃ ε > 0 ∃ A0 ∈ B(E) ∃ ν ∈ M1(E) ∀ A ∈ B(E) ∀ y ∈ A0 : P (y, A) ≥ εν(A), (7)

AND

∀ x ∈ E : P
(
inf
n≥0

(
X(n) ∈ A0

)
<∞

∣∣X(0) = x
)
= 1. (8)

The point is that, given a certain “stability” of the sequence X, it should be possible to work with
a “local version” of the Doeblin condition(s) such as (7), when something like [LGD] holds for x
not in all of the state space; the stability of X is ensured by a suitable recurrence, such as (8), or by
existence of a Lyapunov function. Then ergodicity can be proved under some additional conditions.

Here is an example (M. Hairer, J. Mattingly, 2011). Assume that there exist a measurable function
V : E → [0,+∞) (the Lyapunov function) and numbers γ ∈ (0, 1) and K > 0 such that P [V ](x) ≤
γV (x) +K, x ∈ E, and also condition (7) holds with A0 = {x ∈ E : V (x) ≤ 2K/(1 − γ)}. For a
measurable real-valued function φ on E define

‖φ‖ = sup
x∈E

|φ(x)|
1 + V (x)

.

Then P has a unique invariant measure µ. Moreover,
∫
E
V (x)µ(dx) <∞ and there exists a number

C > 0 such that, for all φ with ‖φ‖ <∞,

‖Pn[φ]− φ̄‖ ≤ Cγn‖φ− φ̄‖, φ̄ =

∫
E

φ(x)µ(dx). (9)

Note that (9) suggests an alternative way to measure the distance between two probability measures
µ, ν on B(E): given a suitable class F of real-valued functions on E,

‖µ− ν‖F = sup
φ∈F

∣∣∣∣∫
E

φ(x)µ(dx)−
∫
E

φ(x) ν(dx)

∣∣∣∣ .
In particular, the total variation distance corresponds to taking F as the collection of indica-
tor functions of sets from B(E), whereas the Wasserstein distance (also known as the Kan-
torovich–Rubinstein metric) W1 corresponds to taking F as the collection of Lipschitz continuous
functions on E with the Lipschitz constant at most one: |φ(x)− φ(y)| ≤ ρ(x, y), x, y ∈ E, where ρ
is the metric on E.
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