A Summary of (Abstract) Ergodic Theory for (Abstract) Markov Processes.

Main objects.

State Space E : A Polish metric space (complete separable metric space) with metric p = p(x,y);
Metric ball in E: B(y,r) = {z € E: p(z,y) <r}, center y, radius r;

Transition Probability Function (Transition Semigroup) : P = Py(z,A), t >0, v € E, A € B(E);
(Real — valued) Bounded measurable functions on E : B,(E);

(Real — valued) Bounded continuous functions on E : Cy(E);

Probability measures on (E,B(E)) : M;(E).
Basic Assumptions on P.

(1) For every t > 0 and z € E, the mapping A — P(z, A) is a probability measure on B(E);
(2) For every t > 0 and A € B(E), the mapping « + P,(z, A) is measurable [from (E,B(E)) to
(R, B(R))]-

(3) SEMIGROUP PROPERTY or CHAPMAN-KOLMOGOROV EQUATION:

Proair, A) = / Py(x,dy) P(y, A) = / Pr.dy)P(y. A), t.s>0, AcBE). (1)

E
(4) Starting from identity:
Py(z, A) = 1(z € A). (2)

In terms of a Markov process: if X = (X(t),t > 0) is defined on (Q,]—", (F)tzo,]P’) so that
X(t) € E is Fi-measurable, the MARKOV PROPERTY

E(p(X(1))|F) = E(o(X(1))|X(5), t > 520, v € By(E),
holds, and the process is (time-)homogeneous:
E(p(X(1))|X(5)) = E(p(X(t — 5))[X(0), t > s >0, € By(E),
then
P(X(t) € A|X(s) =2) = P_y(z, A), t >s >0, z € E, A€ B(E).
Note that these constructions work the same for both discrete and continuous time parameter.

Basic Notations:

e Total variation distance:

[ =v|lrv = sup [u(A) —v(A)], pve Mi(E);
AeB(E)

e Action on functions:

Plg)(z) = / o(y)Pz,dy), z€E, e By(E):

e Action on measures:

Prv|(A) = / P(z,Av(dz), Aec B(E), ve M(E);

E
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In terms of the Markov process X: BP[y](z) = E(cp (X(2))]X(0) = m); PrV](A) =P(X(¢t) € A)
if the distribution of X (0) is v, that is, P(X(0) € C) = v(C).

To note: by (2), Pylp] = ¢, Fjlv] = v; also, P[1] = 1.

Advanced definitions.

(1) u € M(E) is called INVARIANT MEASURE for P if P*[u](A) = u(A) for all A € B(E) and
t > 0. Equivalently,

[ Plel@wtdn) = [ panlds). ¢ < By(). 3)
E E
(2) P is called FELLER if
tli%}r]%(x,B(x,r)) =1, r>0, x €E; (4)
¢ € C(E) = PBly] € G(E), t>0. (5)
(3) P is called STRONG FELLER at ¢y > 0 if it is Feller and
p € By(E) = Pylg] € CG(E). (6)

(4) P is called REGULAR at t; > 0 if the measures P, (z,-) are equivalent for all x € E;
(5) P is called IRREDUCIBLE at ty > 0 if P, (2, A) > 0 for all x € E and all open sets A C E.

To Note:

e Condition (4) is equivalent to lim,_,04 P[p] = ¢ for every bounded Lipschitz continuous
v:E—R.
o If p € My(E) and P, is symmetric on Ly(E; p), that is

[ Pl v6e) wldn) = [ Ploa) o(o) ulda), ¢2 0. 9.0 € La(Es )
then p is invariant for P [take ¢ identically equal to 1 and get (3)].

The Ergodic Theorem. If P has a unique invariant measure g and f : E — R is a function such
that [g [f(2)| p(dx) < co, then, for the corresponding Markov process X, the following convergence
takes place, both with probability one and in Ly:

lim %/0 F(X(@)) dt:/Ef(x)u(dx) (continuous time)

JEI;O%Zf(X(k)) = /Ef(a:’) p(dx) (discrete time).

Moreover, under some additional conditions, the Central Limit Theorem holds for a suitably nor-
malized difference.



The main results.

(1) Krylov-Bogolyubov: If P is Feller and there exist v, u € M;(E) such that, for some
sequence t,, / +00,
I
lim — / Pylv]dt = p weakly,
0

n—o0 n

then p is invariant for P.
(2) Doob: If P has an invariant measure g and there exists a ¢, > 0 such that P is regular at
to, then
e is the unique invariant measure for P;
e 4 is equivalent to Py(z,-) for all z € E and t > to;
e ast — 0o, P(z,-) converges to p in total variation for every x € E.
(3) Khasminskii: If P is strong Feller at ¢y > 0 and irreducible at ¢; > 0, then P is regular at
to + 1.
(4) Doeblin: If there exist vy € M;(E), ¢ > 0 and ¢, > 0 so that, for all A € B(E),

P [v](A) > evg(A), v € Mi(E),
then there is a unique invariant measure p for P and
In(1—¢)
—1- lo

(5) Bonus: A Feller Markov process is strong Markov (that is, can be re-started at a stopping
time), and a Feller semigroup is a transition semigroup of a strong Markov family [The-
orems 31.11. and 31.12 in Fristedt and Gray, A Modern Approach to Probability Theory,
Birkh&user /Springer, 1997]

1P V] = My —plv, A=-

Now assume that time is discrete: ¢ = 0,1,2,. .; P (x,A) = P(z,A) is the one-step transi-
tion probability function: P(z,4) = P(X(1) € A|X(0) = z); P.(x,A) is the n-step transition
probability P,(z,A) = (X(n) € A|X( ) = z). Even though there is a certain abuse of no-
tations, with P denoting the whole transition semigroup and the one-step transition function,

note that, by Chapman Kolmogorov, one-step transition probabilities determine everything else:
Py(z,A) = [¢ P(z,dy)P(y, A), etc.

DOEBLIN CONDITION(S).

[IMGD] More general: there are vy € M;(E), ng > 1, ¢ € (0,1) so that, for all A € B(E) with
1p(A) < e and all x € E, we have P, (z,A) <1 —¢.

[LGD] Less general: there are vy € M;(E), ng > 1, and § € (0,1) such that, for all z € E, we
have P, (x, A) > dvp(A).

Note that

(1) condition [MGD] always holds when E is finite, with N elements: take v to be uniform on
E and € < 1/N so that v(A) < e means A is an empty set;

(2) condition [LGD] implies [MGD] with the same v and ny and with e = 1/2;

(3) condition [LGD] holds for finite state irreducible aperiodic Markov sequences, with v equal

to the invariant distribution and ng is whatever ensures pgm) >0 for all 4,5 € E;

(4) condition [LGD] ensures geometric ergodicity: existence and uniqueness of the invariant

measure g such that

[Pa(z,) = plloy < (1 - 5)(n/n0)_1, z € E.
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The Harris Chain. Here is one possible definition: The Markov sequence X = (X (n), n > O)
with X (n) € E, is called a HARRIS CHAIN if

de>03 A4 eBE)Fve Mi(E)VAcBE)VyecAy: Py, A) >ev(4), (7)
AND

Va:eE:]P’(inf (X(n) € Ag) <oo|X(O):x) ~1. 8)

n>0

The point is that, given a certain “stability” of the sequence X, it should be possible to work with
a “local version” of the Doeblin condition(s) such as (7), when something like [LGD] holds for x
not in all of the state space; the stability of X is ensured by a suitable recurrence, such as (8), or by
existence of a Lyapunov function. Then ergodicity can be proved under some additional conditions.

Here is an example (M. Hairer, J. Mattingly, 2011). Assume that there exist a measurable function
V:E — [0,400) (the Lyapunov function) and numbers v € (0,1) and K > 0 such that P[V](z) <
YV (z) + K, = € E, and also condition (7) holds with 4y = {x € E: V(z) < 2K/(1 —~)}. For a
measurable real-valued function ¢ on E define

_ |0 ()]
el =5 Ty

Then P has a unique invariant measure p. Moreover, [ V() p(dz) < oo and there exists a number
C' > 0 such that, for all ¢ with ||¢|| < oo,

WHﬂ—Mhﬂ%Ww—Mszéwwnmm) (9)

Note that (9) suggests an alternative way to measure the distance between two probability measures
w,v on B(E): given a suitable class § of real-valued functions on E,

[ et utdn) = [ ola)vido

E

[ — vz = sup
pEF

In particular, the total variation distance corresponds to taking § as the collection of indica-
tor functions of sets from B(E), whereas the WASSERSTEIN DISTANCE (also known as the Kan-
torovich—Rubinstein metric) W; corresponds to taking § as the collection of Lipschitz continuous
functions on E with the Lipschitz constant at most one: |¢p(x) — p(y)| < p(z,y), x,y € E, where p
is the metric on E.
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e Joseph Leo Doob (1910-2004), Harvard Ph.D. (1932), professor at UIUC (1935-1978), ad-
visor of David Blackwell.

e Rafail Zalmanovich Khasminskii (b. 1931), student of Dynkin, eventually a professor at
Wayne State University.

e Wolfgang Doeblin (1915-1940), died in WWII.

e Theodore Edward Harris (1919-2005), was a math professor at USC.

e William Feller (1906-1970), was born in Zagreb, Croatia, and his original name was Vilibald
Srecko Feller.



