Spring 2022, MATH 408, Exam 2
Monday, April 18; 10-10:50am
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)
Instructions:

- You should have access to a calculator or some other computing device, and to the distribution tables (normal, t, χ^{2}, and F). Instead of the tables, you are welcome to use the statistical functions available on your computing device.
- Answer all questions and clearly indicate your answers; upload the solutions to GradeScope.
- There are five problems; each problem is worth 10 points.

Problem 1. Fill in the rest of the following two-way ANOVA table.

Problem 2. To test whether a die is fair, 72 rolls were made, and the corresponding outcomes were as follows:

Face value Observed frequency

Expected $=\frac{72}{6}$	$(\text { ob -exp })^{2}$
12	9
12	4
12	25
12	16
12	1
12	9

Estimate the p-value if the χ^{2} test is used.

$$
\begin{aligned}
& \sum \frac{(o b s-e x p)^{2}}{\exp }=\frac{9+4+25+16+\sqrt{+9}}{12}=\frac{30+34}{12}=\frac{64}{12} \\
& p \text {-value }=p\left(x_{5}^{2}>\frac{64}{12}\right)=P\left(x_{5}^{2}>5.33\right) \\
& \text { (or0.38) }
\end{aligned}
$$

Problem 3. Compute the Spearman rank correlation coefficient for the data set

$$
\begin{gathered}
X_{1}=2, X_{2}=4, X_{3}=6, X_{4}=1, X_{5}=5, X_{6}=3 \\
(\operatorname{Rank}(x)-\operatorname{Rank}(4))^{2} \begin{array}{r}
Y_{1}=3, Y_{2}=1, Y_{3}=5, Y_{4}=2, Y_{5}=4, Y_{6}=6 \\
1+9+1+1+1+9
\end{array}
\end{gathered}
$$

Indicate the formula you are using and show your work. Keep in mind that your final answer

$$
r_{s}=1-\frac{6 \sum(\operatorname{Rank}(x)-\operatorname{Rank}(k))^{2}}{n\left(n^{2}-1\right)}=\frac{6 \cdot 22}{n=6}=1-\frac{22}{35}=\frac{13}{35}
$$

Problems 4. Assume the following is an independent sample from a population with a continuous $\operatorname{cdf} F_{X}=F(x)$:

$$
X_{1}=14 \quad X_{2}=6 \quad X_{3}=10.5 \quad X_{4}=11 \quad X_{5}=12
$$

and assume that the following is an independent sample from a population with $\operatorname{cdf} F_{Y}=F(x-\theta)$

$$
1(Y>X) \quad Y_{1}=14.5 \quad Y_{2}=8 \quad Y_{3}=7 \quad Y_{4}=9 \quad Y_{5}=13
$$

Compute the p-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta>0$.
You will need the binomial coefficients $1,5,10,10,5,1$,

$$
p-v \text { Glue }=\mathbb{P}\left(B\left(5, \frac{1}{2}\right) \geqslant 3\right)=\frac{10+5+1}{25}=\frac{16}{32}=\frac{1}{2} \quad P(Y>x)>\frac{1}{2}
$$

Problem 5. A coin-making machine produces pennies with unknown probability p to turn up heads; this probability is equally likely to be any number between 0 and 1.

A coin pops out of the machine, flipped 23 times and lands heads 9 times. Compute the Bayesian estimate \hat{p} of p. ।

$$
\begin{aligned}
& \hat{p}=\int_{0} p f^{*}(p) d p=\mathbb{E}(\operatorname{seck}(10,15))=\frac{10}{25}=\frac{2}{5} \\
& f^{*} \sim \operatorname{Beta}(a+1,23-a+1)
\end{aligned}
$$

