Fall 2020, MATH 408, Exam 2
Friday, November 6; 9-9:50am
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- If you have a question, please write to the instructor using the private chat function of the zoom meeting. Other than that, do not communicate with anybody during the exam.
- You should have (and use!) a calculator or other computing device and three distribution tables: normal, t, and χ^{2}. Instead of the tables, you are welcome to use the corresponding statistical functions on your computing device.
- Answer all questions and clearly indicate your answers.
- Each problem is worth 10 points.

Problem 1. Fill in the rest of the following two-way ANOVA table.

Source	SS	df	MS	F	Prob $>F$
Columns		5			
Rows	6664				
Error	8290	20			
Total	23157	29			

Problem 2. To test whether a die is fair, 66 rolls were made, and the corresponding outcomes were as follows:

Face value	Observed frequency
1	8
2	9
3	16
4	15
5	9
6	9

Estimate the p-value if the χ^{2} test is used.
Would you consider the die fair? Explain your conclusion.

Problem 3. Assume that

$$
X_{1}=2, X_{2}=4, X_{3}=6, X_{4}=1, X_{5}=5, X_{6}=3
$$

is an independent random sample from a population with a continuous cdf $F_{X}=F(x)$, and assume that

$$
Y_{1}=1, Y_{2}=3, Y_{3}=5, Y_{4}=2, Y_{5}=4, Y_{6}=6
$$

is an independent random sample from a population with $\operatorname{cdf} F_{Y}=F(x-\theta)$. Compute the p-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta<0$.

You will need the binomial coefficients $1,6,15,20,15,6,1$.
Problems 4. Compute the Spearman rank correlation coefficient for the data set

$$
\begin{aligned}
& X_{1}=2, X_{2}=4, X_{3}=6, X_{4}=1, X_{5}=5, X_{6}=3 \\
& Y_{1}=1, Y_{2}=3, Y_{3}=5, Y_{4}=2, Y_{5}=4, Y_{6}=6
\end{aligned}
$$

Indicate the formula you are using and show your work. Keep in mind that your final answer should be in the interval $[-1,1]$; ideally, the answer should simplify to a nice fraction, either ordinary or decimal.

Problem 5. For the first-year students at a certain university, the correlation between SAT scores and first-year GPA was 0.4 . Assume the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT was 85%.

