Fall 2017, MATH 408, Exam 2
Monday, November 13, 2017; 1-1:50pm
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Name:

Circle the time of your discussion section: 2pm 3pm

Instructions:

- No books or notes of any kind.
- Turn off cell phones.
- Answer all questions and clearly indicate your answers.
- Each problem is worth 10 points.
- Show your work! Points might be taken off for a correct answer with no explanations.

Problem	Possible	Actual
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Problem 1. Fill in the rest of the following two-way ANOVA table.

Source	SS	df	MS	F	Prob $>F$
Columns					
Rows	6664	4			
Error	8290	20			
Total	23157	29			

Problem 2. To test whether a die is fair, 66 rolls were made, and the corresponding outcomes were as follows:

Face value	Observed frequency
1	8
2	9
3	16
4	15
5	9
6	9

Estimate the p-value if the χ^{2} test is used.

Would you consider the die fair? Explain your conclusion.

Problem 3. In a certain city, there are about one million eligible voters. To study the relationship between sex and participation in a particular election, a simple random sample of size 10,000 was chosen. The results:

	Men	Women
Voted	2,850	3,550
Didn't vote	1,450	2,150

Compute the p-value for the χ^{2}-test of the null hypothesis that sex and voting are independent.

Would you reject the null hypothesis on the basis of your calculations? Explain your conclusion.

Problem 4. Assume that

$$
X_{1}=2, X_{2}=4, X_{3}=6, X_{4}=1, X_{5}=5, X_{6}=3
$$

is an independent random sample from a population with a continuous cdf $F_{X}=F(x)$, and assume that

$$
Y_{1}=1, Y_{2}=3, Y_{3}=5, Y_{4}=2, Y_{5}=4, Y_{6}=6
$$

is an independent random sample from a population with $\operatorname{cdf} F_{Y}=F(x-\theta)$. Compute the p-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta<0$.

You will need the binomial coefficients $1,6,15,20,15,6,1$.

Problems 5. Compute the Spearman rank correlation coefficient for the data set

$$
X_{1}=2, X_{2}=4, X_{3}=6, X_{4}=1, X_{5}=5, X_{6}=3 ; Y_{1}=1, Y_{2}=3, Y_{3}=5, Y_{4}=2, Y_{5}=4, Y_{6}=6 .
$$

You can speed up your computations by noticinng that $1+2+3+4+5+6=21$ and $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}=7 \cdot 13=91$. Keep in mind that your final answer should be in the interval $[-1,1]$; ideally, the answer should simplify to a nice fraction, either ordinary or decimal.

