Fall 2021, MATH 407, Mid-Term Exam 2

Wednesday, November 17, 2021, 9:00-9:50am
Instructor S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- No books, notes, calculators, or help from other people.
- Turn off cell phones.
- Show your work/explain your answers.
- You have 50 minutes to complete the exam.
- There are five problems; 10 points per problem.
- Upload the solutions to GradeScope.
standard normal pdf: $(2 \pi)^{-1 / 2} e^{-x^{2} / 2} ; \operatorname{Gamma}(a, b)$ pdf: $b^{a}(\Gamma(a))^{-1} x^{a-1} e^{-b x}$; Exponential with mean θ is $\operatorname{Gamma}(1,1 / \theta)$, $\operatorname{Beta}(a, b)$ pdf: $(B(a, b))^{-1} x^{a-1}(1-x)^{b-1}$; Poisson, mean μ, pmf: $e^{-\mu} k^{\mu} / k!$.

Problem 1. For a randomly selected group of 50 people, compute the expected number of distinct birthdays (that is, the expected number of the days of the year that are a birthday of at least one person in the group). Assume 365 days in a year.

Problem 2. The joint probability density function of two random variables X and Y

$$
f_{X, Y}(x, y)=\left\{\begin{array}{lc}
C x, & \text { if } x^{2}+y^{2} \leq 1, \\
0, & \text { otherwise. }
\end{array}\right.
$$

Compute $\mathbb{E}(X \mid Y)$. Note: there is no need to know C.
Problem 3. At a particular location, there is, on average, one earthquake every 4 days. Assuming that the earthquakes follow Poisson process, compute, approximately, the probability that there are more than 100 earthquakes in 360 days. Leave your answer in the form $\mathbb{P}(\mathcal{N}<r)$ or $\mathbb{P}(\mathcal{N}>r)$, where \mathcal{N} is a standard normal random variable and r is a real number. Then circle the interval that contains your answer:

$$
(0,0.1) \quad[0.1,0.3) \quad[0.3,0.5) \quad[0.5,1)
$$

Problem 4. Let X, Y be independent exponential random variables with $\mathbb{E}(X)=\mathbb{E}(Y)=1 / 2$. Compute the probability density functions of the random variables $X+Y$ and $X /(X+Y)$.

Problem 5. Customers arrive at a bank at a Poisson rate λ. Suppose that two customers arrive during the first hour. Compute the probability that at least one of the customers arrived during the first 15 minutes.

